Giải Toán 11 trang 70 Tập 1 Chân trời sáng tạo

Với giải bài tập Toán 11 trang 70 trong Bài 1: Giới hạn của dãy số sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 70.

1 480 29/06/2023


Giải Toán 11 trang 70 Tập 1

Bài 4 trang 70 Toán 11 Tập 1: Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dài), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

a) Kí hiệu an là diện tích của hình vuông thứ n và Sn là tổng diện tích của n hình vuông đầu tiên. Viết công thức tính an, Sn (n = 1, 2, 3, ...) và tìm limSn (giới hạn này nếu có được gọi là tổng diện tích của các hình vuông).

b) Kí hiệu pn là chu vi của hình vuông thứ n và Qn là tổng chu vi của n hình vuông đầu tiên. Viết công thức tính pn và Qn (n = 1, 2, 3, ...) và tìm limQn (giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).

Lời giải:

a) Diện tích của các hình vuông lập thành một cấp số nhân lùi vô hạn (an) với số hạng đầu là u1 = 1 và công bội 12 nên công thức tổng quát của an = 12n1.

Ta có: Sn=1+12+14+...+12n+...

Tổng cấp số nhân lùi vô hạn là: S=limSn=lim1+12+14+...+12n+...=1112=2.

b) Chu vi pn của hình vuông lập thành một cấp số nhân lùi vô hạn với số hạng đầu u1 = 4 và công bội q = 12 có số hạng tổng quát là: pn=412n1.

Ta có: Qn=4+4.12+4.14+...+4.12n+...

Tổng của cấp số nhân lùi vô hạn là: Q=limQn=lim4+4.12+4.14+...+4.12n+...=4112=8.

Bài 5 trang 70 Toán 11 Tập 1: Xét quá trình tạo ra hình có chu vi vô cực và diện tích bằng 0 như sau:

a) Bắt đầu một hình vuông H­0 cạnh bằng 1 đơn vị độ dài (xem Hình 6a). Chia hình vuông H0 thành chín hình vuông bằng nhau, bỏ đi bốn hình vuông, nhận được hình H1 (xem Hình 6b). Tiếp theo, chia mỗi hình vuông của H1 thành chín hình vuông, rồi bỏ đi bốn hình vuông, nhận được hình H2 (xem Hình 6c). Tiếp tục quá trình này ta nhận được một dãy hình Hn(n = 1, 2, 3, ...).

Bài 5 trang 70 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta có: H1 có 5 hình vuông, mỗi hình vuông có cạnh bằng 13;

H2 có 5.5 = 52 hình vuông, mỗi hình vuông có cạnh bằng 13.13=132;...

Từ đó, nhận được Hn có 5n hình vuông, mỗi hình vuông có cạnh bằng 13n.

a) Tính diện tích Sn của Hn và tính lim Sn.

b) Tính chu vi pn của Hn và tính limpn.

(Quá trình trên tạo nên một hình, gọi là một fractal, được coi là có diện tích lim Sn và chu vi limpn).

Lời giải:

a) Diện tích Sn của Hn là Sn=5n.13n.13n=5n.132n=59n

Khi đó limSn=lim59n=0.

b) Chu vi pn của Hn là: pn=5n.4.13n=4.53n.

Khi đó limpn = limBài 5 trang 70 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 = 0.

Xem thêm lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: 

Giải Toán 11 trang 64 Tập 1

Giải Toán 11 trang 65 Tập 1

Giải Toán 11 trang 66 Tập 1

Giải Toán 11 trang 67 Tập 1

Giải Toán 11 trang 68 Tập 1

Giải Toán 11 trang 69 Tập 1

Giải Toán 11 trang 70 Tập 1

1 480 29/06/2023


Xem thêm các chương trình khác: