Giải Toán 11 trang 27 Tập 2 Cánh diều

Với giải bài tập Toán 11 trang 27 Tập 2 trong Bài 1: Phép tính lũy thừa với số mũ thực sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 27 Tập 2.

1 242 10/11/2023


Giải Toán 11 trang 27 Tập 2

Câu hỏi khởi động trang 27 Toán 11 Tập 2: Ở các lớp dưới, ta đã làm quen với phép tính lũy thừa với số mũ tự nhiên của một số thực và các tính chất của phép tính lũy thừa đó. Những khái niệm lũy thừa với số mũ nguyên, số mũ hữu tỉ và số mũ thực của một số thực được xây dựng như thế nào? Những phép lũy thừa đó có tính chất gì?

Lời giải:

– Những khái niệm lũy thừa với số mũ nguyên, số mũ hữu tỉ và số mũ thực của một số thực được xây dựng dựa trên lũy thừa bậc n của a, kí hiệu là an, là tích của n thừa số a:

an = a.a.a...a (n thừa số a) với n là số nguyên dương.

Số a được gọi là cơ số, n được gọi là số mũ.

– Tính chất của lũy thừa mà ta đã học ở các lớp dưới:

⦁ am . an = am+n;

aman=amn;

amn=am.n;

⦁ (a . b)m = am . bm;

abm=ambm;

⦁ Với a > 1 thì am > an ⇔ m > n;

⦁Với 0 < a < 1 thì am > an ⇔ m < n.

I. Phép tính lũy thừa với số mũ hữu tỷ

Hoạt động 1 trang 27 Toán 11 Tập 2:

a) Cho n là một số nguyên dương. Với a là số thực tùy ý, nêu định nghĩa lũy thừa bậc n của a.

b) Với a là số thực tùy ý khác 0, nêu quy ước xác định lũy thừa bậc 0 của a.

Lời giải:

a) Lũy thừa bậc n của a, kí hiệu là an, là tích của n thừa số a: an = a.a.a...a (n thừa số a) với n là số nguyên dương.

Số a được gọi là cơ số, n được gọi là số mũ.

b) Quy ước xác định lũy thừa bậc 0 của a (với a khác 0) là: a0 =1.

Xem thêm Lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác:

Giải Toán 11 trang 27 Tập 2

Giải Toán 11 trang 28 Tập 2

Giải Toán 11 trang 29 Tập 2

Giải Toán 11 trang 30 Tập 2

Giải Toán 11 trang 31 Tập 2

Giải Toán 11 trang 32 Tập 2

Giải Toán 11 trang 33 Tập 2

1 242 10/11/2023


Xem thêm các chương trình khác: