Giải Toán 10 trang 61 Tập 1 Cánh diều
Với giải bài tập Toán lớp 10 trang 61 Tập 1 trong Bài tập cuối chương 3 sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 61 Tập 1.
Giải Toán 10 trang 61 Tập 1
Bài 5 trang 61 Toán lớp 10 Tập 1: Vẽ đồ thị của mỗi hàm số sau:
Lời giải:
a) y = x2 – 3x – 4
Ta có: hệ số a = 1 > 0, b = – 3, c = – 4, ∆ = (– 3)2 – 4 . 1 . (– 4) = 25 > 0.
- Parabol có bề lõm hướng lên trên.
- Tọa độ đỉnh I.
- Trục đối xứng .
- Ta có bảng giá trị sau:
x |
-1 |
0 |
|
3 |
4 |
y = x2 – 3x – 4 |
0 |
-4 |
|
-4 |
0 |
Đồ thị hàm số y = x2 – 3x – 4 là đường cong đi qua các điểm B(-1; 0), A(0; -4); ; D(3; -4) và C(4; 0).
b) y = x2 + 2x + 1
Ta có hệ số a = 1 > 0, b = 2, c = 1, ∆ = 22 – 4 . 1 . 1 = 0.
- Parabol có bề lõm hướng lên trên.
- Tọa độ đỉnh I(– 1; 0).
- Trục đối xứng x = – 1.
- Ta có bảng giá trị sau:
x |
-3 |
-2 |
-1 |
0 |
1 |
y = x2 + 2x + 1 |
4 |
1 |
0 |
1 |
4 |
Đồ thị hàm số y = x2 + 2x + 1 là đường cong đi qua các điểm A(-3; 4), B(-2; 1); I(-1; 0); C(0; 1) và D(1; 4).
c) y = – x2 + 2x – 2
Ta có hệ số a = – 1 < 0, b = 2, c = – 2 và ∆ = 22 – 4 . (– 1) . (– 2) = – 4.
- Đồ thị hàm số có bề lõm hướng xuống dưới.
- Tọa độ đỉnh I(1; – 1).
- Trục đối xứng x = 1.
- Ta có bảng sau:
x |
-1 |
0 |
1 |
2 |
3 |
y = - x2 + 2x - 2 |
-5 |
-2 |
-1 |
-2 |
-5 |
Đồ thị hàm số y = - x2 + 2x - 2 là đường cong đi qua các điểm A(-1; -5), B(0; -2); I(1; -1); C(2; -2) và C(3; -5).
Bài 6 trang 61 Toán lớp 10 Tập 1: Lập bảng xét dấu của mỗi tam thức bậc hai sau:
Lời giải:
a) Xét tam thức bậc hai f(x) = – 3x2 + 4x – 1 có:
∆ = 42 – 4 . (– 3) . (– 1) = 4 > 0.
Do đó tam thức f(x) có hai nghiệm phân biệt x1 = và x2 = 1
Ta lại có a = - 3 < 0
Ta lập được bảng xét dấu như sau:
x |
– ∞ 1 + ∞ |
f(x) |
– 0 + 0 – |
b) Xét tam thức bậc hai f(x) = x2 – x – 12 có:
∆ = (– 1)2 – 4 . 1 . (– 12) = 49 > 0.
Do đó tam thức f(x) có hai nghiệm phân biệt x1 = – 3 và x2 = 4.
Ta có hệ số a = 1 > 0
Ta lập được bảng xét dấu sau:
x |
– ∞ – 3 4 + ∞ |
f(x) |
+ 0 – 0 + |
c) Xét tam thức bậc hai f(x) = 16x2 + 24x + 9 có:
∆ = 242 – 4 . 16 . 9 = 0.
Do đó tam thức bậc hai có nghiệm kép x = .
Ta có hệ số a = 16 > 0
Sử dụng định lý về dấu của tam thức bậc hai, ta có bảng xét dấu sau:
x |
– ∞ + ∞ |
f(x) |
+ 0 + |
Bài 7 trang 61 Toán lớp 10 Tập 1: Giải các bất phương trình sau:
Lời giải:
a) Xét tam thức bậc hai 2x2 + 3x + 1 có ∆ = 32 – 4 . 2 . 1 = 1 > 0
Suy ra tam thức này có hai nghiệm x1 = – 1, x2 =
Ta có hệ số a = 2 > 0.
Khi đó ta có bảng xét dấu sau:
Ta thấy tam thức 2x2 + 3x + 1 không âm khi x ≤ -1 hoặc .
Vậy tập nghiệm của bất phương trình đã cho là .
b) Xét tam thức bậc hai – 3x2 + x + 1 có: Hệ số a = – 3 < 0 và
∆ = 12 – 4 . (– 3) . 1 = 13 > 0
Suy ra tam thức này có hai nghiệm
Ta có bảng xét dấu sau:
Ta thấy tam thức – 3x2 + x + 1 mang dấu “+” khi .
Vậy tập nghiệm của bất phương trình – 3x2 + x + 1 > 0 là .
c) Xét tam thức bậc hai 4x2 + 4x + 1 có hệ số a = 4 > 0 và ∆ = 42 – 4 . 4 . 1 = 0
Suy ra tam thức này có nghiệm kép là x = .
Ta có bảng xét dấu sau:
Từ bảng xét dấu ta thấy 4x2 + 4x + 1 > 0 với mọi và 4x2 + 4x + 1 = 0 tại x = .
Do đó bất phương trình 4x2 + 4x + 1 ≥ 0 đã cho có vô số nghiệm.
Vậy tập nghiệm của bất phương trình là .
d) Xét tam thức bậc hai – 16x2 + 8x – 1 < 0 có hệ số a = -16 < 0 và ∆’ = 42 – (– 16) . (– 1) = 0 nên tam thức có nghiệm kép là x = .
Ta có bảng xét dấu:
Ta thấy tam thức – 16x2 + 8x – 1 < 0 với mọi .
Vậy tập nghiệm của bất phương trình – 16x2 + 8x – 1 < 0 là .
e) Xét tam thức bậc hai 2x2 + x + 3 có hệ số a = 2 > 0 và ∆ = 12 – 4 . 2 . 3 = – 23 < 0
Ta có bảng xét dấu sau:
Dựa vào bảng xét dấu ta thấy 2x2 + x + 3 > 0 với mọi .
Vậy bất phương trình 2x2 + x + 3 < 0 vô nghiệm.
g) – 3x2 + 4x – 5 < 0
Xét tam thức bậc hai – 3x2 + 4x – 5 có hệ số a = – 3 < 0 và ∆’ = 22 – (– 3) . (– 5) = – 11 < 0.
Ta có bảng xét dấu:
Dựa vào bảng xét dấu ta thấy – 3x2 + 4x – 5 < 0 với mọi .
Vậy tập nghiệm của bất phương trình – 3x2 + 4x – 5 < 0 là .
Bài 8 trang 61 Toán lớp 10 Tập 1: Giải các phương trình sau:
Lời giải:
a) (1)
Điều kiện: x > 0
(1) ⇔ x + 2 = x2
⇔ x2 – x – 2 = 0
Vậy nghiệm của phương trình đã cho là x = 2.
b)
⇔ 2x2 + 3x – 2 = x2 + x + 6
⇔ 2x2 – x2 + 3x – x – 2 – 6 = 0
⇔ x2 + 2x – 8 = 0
Thay x = -4 và x = 2 lần lượt vào bất đẳng thức 2x2 + 3x – 2 ≥ 0 ta thấy cả hai giá trị đều thỏa mãn bất đẳng thức.
Vậy nghiệm của phương trình đã cho là x = 2 và x = – 4.
c) (3)
Điều kiện x + 3 ≥ 0 ⇔ x ≥ – 3.
Phương trình (3) ⇔ 2x2 + 3x – 1 = (x + 3)2
⇔ 2x2 + 3x – 1 = x2 + 6x + 9
⇔ 2x2 – x2 + 3x – 6x – 1 – 9 = 0
⇔ x2 – 3x – 10 = 0
(thỏa mãn điều kiện)
Vậy nghiệm của phương trình đã cho là x = – 2 và x = 5.
Lời giải:
Gọi số ki-lô-mét đường dây điện từ vị trí B đến vị trí S là x (km) (x > 0).
Khi đó, ta có: SA = AB – BS = 4 - x (km) (Ta có 4 – x > 0 ⇔ x < 4)
Số tiền công thiết kế trên đoạn đường SA là: 3(4 – x) (triệu đồng)
Xét ∆CBS vuông tại B, có:
CS2 = BS2 + BC2 (định lý Py – ta – go)
CS2 = x2 + 12 = x2 + 1
CS = (km)
Số tiền công thiết kế trên đoạn đường CS là: (triệu đồng)
Tổng số tiền công thiết kế đường dây điện trên cả quãng đường AC là:
(triệu đồng)
Vì tổng số tiền công là 16 triệu đồng nên ta có phương trình:
(1)
Điều kiện 3x + 4 ≥ 0 ⇔
Phương trình (1) ⇔ 25(x2 + 1) = (3x + 4)2
⇔ 25x2 + 25 = 9x2 + 24x + 16
⇔ 16x2 - 24x + 9 = 0
(thỏa mãn điều kiện)
Do đó số ki-lô-mét đường dây từ vị trí A đến S là 4 – 0,75 = 3,25 km.
Số ki-lô-mét đường dây từ vị trí S đến C là: (km).
Vậy tổng số ki-lô-mét đường dây đã thiết kế là 3,25 + 1,25 = 4,5 (km).
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều