Cho dãy số (u­n) biết u1 = 1, un = 1/3un-1 + 1 với n thuộc N*, n >= 2. Đặt vn = un - 3/2 với n thuộc N*

Lời giải Bài 44 trang 56 SBT Toán 11 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 1,124 16/08/2023


Giải SBT Toán 11 Bài 3: Cấp số nhân

Bài 44 trang 56 SBT Toán 11 Tập 1Cho dãy số (u­n) biết u1 = 1, un=13un1+1  với n ∈ ℕ*, n ≥ 2. Đặt vn=un32  với n ∈ ℕ*.

a) Chứng minh rằng dãy số (vn) là cấp số nhân. Tìm số hạng đầu, công bội của cấp số nhân đó.

b) Tìm công thức số hạng tổng quát của (vn), (un).

c) Tính tổng S = u1 + u2 + u3 + ... + u10.

Lời giải:

a) Ta có v1=u132=132=12

vn=un32=13un1+132=13un112=13un132=13vn1 với mọi n ∈ ℕ*, n ≥ 2.

Vậy dãy số (vn) là cấp số nhân với số hạng đầu v1=12  và công bội q=13 .

b) Ta có: vn=v1.qn1=12.13n1=12.3n1 .

Từ vn=un32 , suy ra un=vn+32=3212.3n1=3.3n112.3n1=3n12.3n1 .

c) Ta có S = u1 + u2 + u3 + ... + u10

=v1+32+v2+32+v3+32+...+v10+32

= (v1 + v2 + v3 + ... + v10) + 32.10

 Cho dãy số (un) biết u1 = 1 trang 56 SBT Toán 11

1 1,124 16/08/2023


Xem thêm các chương trình khác: