Cho tam giác ABC cân tại A có M là trung điểm của BC. G là giao điểm của hai trung tuyến BD và CE
Lời giải Bài 84* trang 93 SBT Toán 7 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Giải SBT Toán 7 Cánh diều Bài 11. Tính chất ba đường phân giác của tam giác
Bài 84* trang 93 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có M là trung điểm của BC. G là giao điểm của hai trung tuyến BD và CE.
a) Chứng minh: GA, GM, MA lần lượt là tia phân giác của các góc DGE, BGC, EMD.
b) Tìm điều kiện của tam giác ABC để EG là tia phân giác của góc DEM.
Lời giải
a) • Vì tam giác ABC cân tại A nên AB = AC, .
Vì E là trung điểm của AB nên AE = EB = AB.
Vì D là trung điểm của AC nên AD = CD = AC.
Mà AB = AC nên AE = EB = AD = CD.
Tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G nên G là trọng tâm của tam giác ABC.
Do đó đường trung tuyến AM của tam giác ABC cũng đi qua G.
Hay ba điểm A, G, M thẳng hàng.
Xét ∆ABM và ∆ACM có:
AB = AC (chứng minh trên),
AM là cạnh chung,
MB = MC (do M là trung điểm của BC).
Do đó ∆ABM = ∆ACM (c.c.c)
Suy ra (hai góc tương ứng)
Xét ∆AEG và ∆ADG có:
AE = AD (chứng minh trên),
(do ),
AG là cạnh chung
Do đó ∆AEG = ∆ADG (c.g.c).
Suy ra (hai góc tương ứng).
Do vậy GA là tia phân giác của góc DGE.
• Ta có (các cặp góc đối đỉnh)
Mà
Nên
Do đó GM là tia phân giác của góc BGC.
• Xét ∆AME và ∆AMD có:
AE = AD (chứng minh trên),
(do ),
AM là cạnh chung,
Do đó ∆AME = ∆AMD (c.g.c).
Suy ra (hai góc tương ứng)
Nên MA là tia phân giác của góc EMD.
Vậy GA, GM, MA lần lượt là tia phân giác của các góc DGE, BGC, EMD.
b) • Xét ABC có (tổng ba góc của một tam giác)
Mà nên (1)
Ta có AE = AD (chứng minh câu a)
Nên tam giác AED cân tại A
Suy ra
Xét ADE có (tổng ba góc của một tam giác)
Mà nên (2)
Từ (1) và (2) suy ra
Mà hai góc này ở vị trí đồng vị
Do đó ED // BC.
Nên (hai góc so le trong)
• Để EG là tia phân giác của góc DEM thì
Suy ra nên tam giác MEC cân tại M.
Do đó ME = MC
Mặt khác, MB = MC nên ME = MB = MC.
Suy ra tam giác EMB cân tại M nên .
• Xét EBC có (tổng ba góc của một tam giác)
Hay
Mà và
Nên hay
Suy ra
Do đó nên
• Xét ∆BEC và ∆AEC có:
(cùng bằng 90°),
EC là cạnh chung,
BE = AE (chứng minh câu a)
Do đó ∆BEC = ∆AEC (hai cạnh góc vuông).
Suy ra BC = AC.
Mà AB = AC (chứng minh câu a).
Do đó AB = BC = AC nên tam giác ABC là tam giác đều.
Vậy điều kiện để EG là tia phân giác của góc DEM là tam giác ABC là tam giác đều.
Xem thêm lời giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 84* trang 93 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có M là trung điểm của BC. G là giao điểm của hai trung tuyến BD và CE...
Xem thêm lời giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 10. Tính chất ba đường trung tuyến của tam giác
Bài 11. Tính chất ba đường phân giác của tam giác
Bài 12. Tính chất ba đường trung trực của tam giác
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất)– Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Giải sbt Ngữ văn lớp 7 – Cánh Diều
- Văn mẫu lớp 7 – Cánh Diều
- Soạn văn lớp 7 (ngắn nhất) – Cánh Diều
- Giải VBT Ngữ văn lớp 7 – Cánh diều
- Giải sgk Tiếng Anh 7 - Explore English
- Giải sgk Tiếng Anh 7 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 7 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 i-learn Smart World
- Bài tập Tiếng Anh 7 iLearn Smart World theo Unit có đáp án
- Giải sbt Tiếng Anh 7 - ilearn Smart World
- Giải sgk Lịch sử 7 – Cánh Diều
- Lý thuyết Lịch Sử 7 – Cánh Diều
- Giải sbt Lịch sử 7 – Cánh Diều
- Giải VBT Lịch sử 7 – Cánh diều
- Giải sgk Khoa học tự nhiên 7 – Cánh Diều
- Lý thuyết Khoa học tự nhiên 7 – Cánh Diều
- Giải sbt Khoa học tự nhiên 7 – Cánh Diều
- Giải sgk Địa lí 7 – Cánh Diều
- Lý thuyết Địa Lí 7 – Cánh Diều
- Giải sbt Địa lí 7 – Cánh Diều
- Giải VBT Địa lí 7 – Cánh diều
- Giải sgk Tin học 7 – Cánh Diều
- Lý thuyết Tin học 7 – Cánh Diều
- Giải sbt Tin học 7 – Cánh Diều
- Giải sgk Giáo dục công dân 7 – Cánh Diều
- Lý thuyết Giáo dục công dân 7 – Cánh Diều
- Giải sbt Giáo dục công dân 7 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sgk Công nghệ 7 – Cánh Diều
- Lý thuyết Công nghệ 7 – Cánh Diều
- Giải sbt Công nghệ 7 – Cánh Diều
- Giải sgk Giáo dục thể chất 7 – Cánh Diều
- Giải sgk Âm nhạc 7 – Cánh Diều