Cho hình thang cân ABCD có AB//CD, AB<CD, hai đường chéo AC và BD

Lời giải Bài 12 trang 92 SBT Toán 8 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 8.

1 329 15/09/2023


Giải SBT Toán 8 Bài 3: Hình thang cân

Bài 12 trang 92 SBT Toán 8 Tập 1: Cho hình thang cân ABCD có AB//CD,AB<CD, hai đường chéo AC và BD cắt nhau tại P, hai cạnh bên AD và BC kéo dài cắt nhau tại Q. Chứng minh PQ là đường trung trực của hai đáy hình thang cân ABCD.

Lời giải:

Sách bài tập Toán 8 Bài 3 (Cánh diều): Hình thang cân (ảnh 2)

ΔACD=ΔBDC (c.g.c). Suy ra PCD^=PDC^

Do đó, tam giác PCD cân tại P. Suy ra PC=PD

Mà AC=BD, suy ra PA=PB

Do AB//CD nên QAB^=ADC^;QBA^=BCD^ (các cặp góc đồng vị)

Mặt khác, ADC^=BCD^ nên QAB^=QBA^

Do đó, tam giác QAB cân tại Q. Suy ra QA=QB

Mà AD=BC, suy ra QD=QC

Ta có: PA=PB,PC=PD và QA=QB,QC=QD nên PQ là đường trung trực của cả hai đoạn thẳng AB và CD.

1 329 15/09/2023


Xem thêm các chương trình khác: