Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C'

Lời giải Bài 43 trang 113 SBT Toán 11 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 1,454 18/09/2023


Giải SBT Toán 11 Bài 5: Hình lăng trụ và hình hộp

Bài 43 trang 113 SBT Toán 11Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.

a) Chứng minh rằng IK // (BCC'B').

b) Chứng minh rằng (AGK) // (A'IC).

c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính LA'LC.

Lời giải:

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.  a) Chứng minh rằng IK // (BCC'B').  b) Chứng minh rằng (AGK) // (A'IC).  c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính  . (ảnh 1)

a) Gọi M, N lần lượt là trung điểm của cạnh B'C', BB'.

Do I, K lần lượt là trọng tâm của các tam giác A'B'C' và A'B'B nên A'IA'M=A'KA'N=23.

Suy ra IK // MN. Mà MN ⊂ (BCC'B') nên IK // (BCC'B').

b) Gọi P là trung điểm của cạnh BC.

Khi đó, mặt phẳng (AGK) cũng là mặt phẳng (AB'P), mặt phẳng (A'IC) cũng là mặt phẳng (A'MC). 

Ta có B'P // MC (B'MCP là hình bình hành) nên B'P // (A'MC)

AP // A'M (APMA' là hình bình hành) nên AP // (A'MC).

Từ đó, suy ra (AB'P) // (A'MC) hay (AGK) // (A'IC).

c) Với K là trọng tâm của tam giác A'BB', ta suy ra B'KB'A=13 nên B'KKA=12.

Ta có đường thẳng B'A cắt ba mặt phẳng song song (A'B'C'), (α), (ABC) lần lượt tại B', K, A; đường thẳng A'C cũng cắt ba mặt phẳng trên theo thứ tự tại A', L, C.

Áp dụng định lí Thalés trong không gian, ta có: B'KA'L=KALC=AB'CA'.

Suy ra A'LLC=B'KKA=12.

Vậy LA'LC=12.

1 1,454 18/09/2023


Xem thêm các chương trình khác: