Cho hình hộp ABCD.A’B’C’D’. Chứng minh: a) (BDA’) // (B’D’C)
Lời giải Bài 3 trang 128 SBT Toán 11 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.
Giải SBT Toán 11 Bài 4: Hai mặt phẳng song song
Bài 3 trang 128 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Chứng minh:
a) (BDA’) // (B’D’C).
b) Đường chéo AC’ đi qua trọng tâm G và G’ của hai tam giác BDA’ và B’D’C.
c) G và G’ chia đoạn AC’ thành ba phần bằng nhau.
*Lời giải:
a) Ta có DD’ // BB’ và DD’ = BB’ (do ABCD.A’B’C’D’ là hình hộp), suy ra DD’B’B là hình bình hành, suy ra BD // B’D’ mà B’D’ ⊂ (B’D’C), suy ra BD // (B’D’C).
Chứng minh tương tự ta có DA’ // B’C, mà B’C ⊂ (B’D’C).
Suy ra DA’ // (B’D’C).
Ta có BD // (B’D’C);
DA’ // (B’D’C);
BD ∩ DA’ = D và BD, DA’ ⊂ (BDA’).
Suy ra (BDA’) // (B’D’C).
b) Gọi O, O’ lần lượt là tâm của hai đáy ABCD và A’B’C’D’.
Trong hình bình hành AA’C’C gọi I là giao điểm của AC’ và A’C; AC’ cắt A’O tại G1.
Trong tam giác AA’C, ta có G1 là giao điểm của hai trung tuyến AI và A’O nên G1 là trọng tâm của tam giác AA’C. Do đó
Mà G là trọng tâm của tam giác A’BD nên ta cũng có
Do đó G1 ≡ G hay ta xác định được G là giao điểm của AC’ và A’O.
Tương tự ta cũng xác định được trọng tâm G’ tam giác B’D’C là giao điểm của AC’ với CO’.
Vậy AC’ đi qua trọng tâm của hai tam giác BDA’ và B’D’C.
c) Ta có ; .
Do đó nên = = .
Hay AG = GG’ = G’C’.
Vậy G và G’ chia đoạn AC’ thành ba phần bằng nhau.
*Phương pháp giải
Dạng 1: Chứng minh hai mặt phẳng song song
Phương pháp giải: Thực hiện một trong hai cách sau:
- Chứng minh trong mặt phẳng này có hai đường thẳng cắt nhau cùng song song với mặt phẳng kia.
Tức là:
- Chứng minh hai mặt phẳng đó cùng song song với mặt phẳng thứ ba
*Lý thuyến cần nắm và dạng toán về hai mặt phẳng song song:
Định nghĩa hai mặt phẳng song song
Hai mặt phẳng được gọi là song song nếu chúng không có điểm chung
Trong thực tế, chúng ta thường gặp hình ảnh của những mặt phẳng song song: các bậc cầu thang, hai mặt đối diện của hộp diêm,…
Điều kiện để hai mặt phẳng song song
- Nếu mặt phẳng (P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) song song với (Q).
Tức là:
Tính chất 1: Qua một điểm nằm ngoài một mặt phẳng, có một và chỉ một mặt phẳng song song với mặt phẳng đó.
- Hệ quả:
a. Nếu đường thẳng a song song với mặt phẳng (Q) thì có duy nhất một mặt phẳng (P) chứa a và song song với mặt phẳng (Q).
b. Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì song song với nhau.
c. Cho điểm A không nằm trên mặt phẳng . Khi đó các đường thẳng đi qua A và song song với cùng nằm trên mặt phẳng đi qua A và song song với .
Tính chất 2: Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song.
Hệ quả: Hai mặt phẳng song song chắn trên hai cát tuyến song song những đoạn thẳng bằng nhau.
Định lí Ta-lét trong không gian
- Định lí: Ba mặt phẳng đôi một song song chắn ra trên hai cát tuyến bất kì các đoạn tương ứng tỉ lệ.
Có nghĩa là: Nếu ba mặt phẳng đôi một song song (P), (Q), (R) cắt hai đường thẳng a và a’ lần lượt tại A, B, C và A’, B’, C’ thì:
- Định lí Ta-lét đảo:
Cho hai đường thẳng chéo nhau a và a’. Lấy các điểm phân biệt A, B, C trên a và A’, B’, C’ trên a’ sao cho:
Khi đó, ba đường thẳng AA’, BB’, CC’ lần lượt nằm trên ba mặt phẳng song song, tức là chúng cùng song song với một mặt phẳng.
Các dạng bài tập về hai mặt phẳng song song
Dạng 1: Chứng minh hai mặt phẳng song song
Phương pháp giải: Thực hiện một trong hai cách sau:
- Chứng minh trong mặt phẳng này có hai đường thẳng cắt nhau cùng song song với mặt phẳng kia.
Tức là:
- Chứng minh hai mặt phẳng đó cùng song song với mặt phẳng thứ ba
Dạng 2: Xác định thiết diện của với hình chóp khi biết với một mặt phẳng cho trước
Phương pháp giải:
Để xác định thiết diện trong trường hợp này ta sử dụng các tính chất sau
- Khi thì sẽ song song với tất cả các đường thẳng trong và ta chuyển về dạng thiết diện song song với đường thẳng.
- Tìm đường thẳng d nằm trong và xét các mặt phẳng có trong hình chóp mà chứa d, khi đó // d nên sẽ cắt các mặt phẳng chứa d theo các giao tuyến song song với d.
Dạng 3: Một số ứng dụng của định lý Ta – lét
Phương pháp giải:Định lý Ta – lét thường được ứng dụng nhiều trong các bài toán tỉ số hay các bài toán chứng minh đường thẳng song song với một mặt phẳng cố định.
Xem thêm các bài viết liên quan hay, chi tiết
Lý thuyết Hai mặt phẳng song song – Toán 11 Chân trời sáng tạo
Toán 11 Bài 4 giải vở bài tập (Chân trời sáng tạo): Hai mặt phẳng song song
50 bài tập về Hai mặt phẳng song song (có đáp án 2024) và cách giải
Xem thêm lời giải SBT Toán lớp 11 bộ sách Chân trời sáng tạo hay, chi tiết khác:
Bài 3 trang 128 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Chứng minh: a) (BDA’) // (B’D’C)....
Xem thêm lời giải SBT Toán lớp 11 bộ sách Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
Bài 2: Hai đường thẳng song song
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo