Xác định hệ số của x^3 trong khai triển biểu thức

Lời giải Bài 34 trang 16 SBT Toán 10 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 500 21/11/2024


Giải SBT Toán 10 Cánh diều Bài 4: Nhị thức Newton

Bài 34 trang 16 SBT Toán 10 Tập 2:

Xác định hệ số của x3 trong khai triển biểu thức 23x+145 .

Lời giải:

Ta có: 23x+145=23x5+5.23x4.14+10.23x3.142+10.23x2.143

+5.23x1.144+145=32243x5+2081x4+527x3+572x2+5384x+11024

Số hạng chứa x3 trong khai triển biểu thức 23x+145 527x3 .

Vậy hệ số của x3 trong khai triển biểu thức 23x+145 527 .

*Phuơng pháp giải

Dạng 1. Tìm số hàng chứa xm trong khai triển

Phương pháp giải:

* Với khai triển (axp + bxq)n (p, q là các hằng số)

Ta có:Nhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11

Số hạng chứa xm ứng với giá trị k thỏa mãn: np – pk + qk = m

Từ đó tìmNhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11

Vậy hệ số của số hạng chứa xm là:Nhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11với giá trị k đã tìm được ở trên.

* Với khai triển P(x) = (a + bxp + cxq)n (p, q là các hằng số)

Ta có:Nhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11

Nhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11

Từ số hạng tổng quát của hai khai triển trên ta tính được hệ số của xm.

* Chú ý:

- Nếu k không nguyên hoặc k > n thì trong khai triển không chứa xm, hệ số phải tìm bằng 0.

- Nếu hỏi hệ số không chứa x tức là tìm hệ số chứa x0.

*Lý thuyết

a) Định nghĩa:

Nhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11

b) Nhận xét:

Trong khai triển Niu tơn (a + b)n có các tính chất sau

- Gồm có n + 1 số hạng

- Số mũ của a giảm từ n đến 0 và số mũ của b tăng từ 0 đến n

- Tổng các số mũ của a và b trong mỗi số hạng bằng n

- Các hệ số có tính đối xứng:Nhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11

- Quan hệ giữa hai hệ số liên tiếp:Nhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11

- Số hạng tổng quát thứ k + 1 của khai triển:Nhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11

Ví dụ: Số hạng thứ nhấtNhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11, số hạng thứ k:Nhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11

c) Hệ quả:

Ta có :Nhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11

Từ khai triển này ta có các kết quả sau

Nhị thức Niu tơn và cách giải các dạng bài tập hay, chi tiết | Toán lớp 11

Xem thêm

Lý thuyết Nhị thức Newton (công thức, khai triển) các dạng bài tập và cách giải

TOP 40 câu Trắc nghiệm Nhị Thức Newton (có đáp án ) | Toán 11

1 500 21/11/2024


Xem thêm các chương trình khác: