Giải Toán 10 trang 84 Tập 2 Cánh diều

Với giải bài tập Toán lớp 10 trang 84 Tập 2 trong Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 84 Tập 2.

1 484 12/02/2023


Giải Toán 10 trang 84 Tập 2

Hoạt động 5 trang 84 Toán 10 Tập 2: Trong mặt phẳng tọa độ, cho hai đường thẳng ∆1 và ∆2 có vectơ chỉ phương lần lượt là u1=a1;b1,  u2=a2;b2. Tính cos(∆1, ∆2).

Lời giải

u1=a1;b1,  u2=a2;b2nên ta có: u1  .  u2=a1.a2+b1.b2;

u1=a12+b12,  u2=a22+b22.

Vậy cos(∆1, ∆2) = cosu1,u2=u1  .u2u1.u2=a1a2+b1b2a12+b12  .  a22+b22.

Luyện tập 3 trang 84 Toán 10 Tập 2: Tính số đo góc giữa hai đường thẳng ∆1 và ∆2 trong mỗi trường hợp sau:

a) ∆1: x=3+33ty=2+3t và ∆2: y – 4 = 0;

b) ∆1: 2x – y = 0 và ∆2: – x + 3y – 5 = 0.

Lời giải

a) Đường thẳng ∆1 có vectơ chỉ phương là u1=33;  3.

Đường thẳng ∆2 có vectơ pháp tuyến là n2=0;  1.

Suy ra ∆2 có một vectơ chỉ phương là u2=1;  0.

Khi đó cos(∆1, ∆2) = 33.1+3.0332+32  .  12+02=336=32.

Vậy (∆1, ∆2) = 30°.

b) ∆1 có vectơ pháp tuyến là n1=2;1, ∆2 có vectơ pháp tuyến là n2=1;  3. Do đó, ta có:

cos(∆1, ∆2) = cosn1,n2=n1  .  n2n1.n2=2.1+1.322+12  .  12+32=22.

Vậy (∆1, ∆2) = 45°.

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Giải Toán 10 trang 81 Tập 2

Giải Toán 10 trang 82 Tập 2

Giải Toán 10 trang 83 Tập 2

Giải Toán 10 trang 84 Tập 2

Giải Toán 10 trang 85 Tập 2

Giải Toán 10 trang 86 Tập 2

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 5: Phương trình đường tròn

Bài 6: Ba đường conic

Bài tập cuối chương 7

Chủ đề 2: Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng

Bài 1: Mệnh đề toán học

1 484 12/02/2023


Xem thêm các chương trình khác: