Giải Toán 10 trang 29 Tập 1 Cánh diều
Với giải bài tập Toán lớp 10 trang 29 Tập 1 trong Bài 2: Hệ bất phương trình bậc nhất hai ẩn sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 29 Tập 1.
Giải Toán 10 trang 29 Tập 1
Lời giải:
a) Ta có:
+ Thay x = 0, y = 2 vào hai bất phương trình (1) và (2) của hệ đã cho, ta có:
(1) 3 . 0 + 2 . 2 ≥ – 6 ⇔ 4 ≥ -6 (luôn đúng).
Và (2) 0 + 4 . 2 > 4 ⇔ 8 > 4 (luôn đúng).
Suy ra (0; 2) là nghiệm chung của hai bất phương trình trong hệ bất phương trình nên (0; 2) là nghiệm của hệ bất phương trình.
+ Thay x = 1, y = 0 vào từng bất phương trình của hệ đã cho ta có:
(1) 3 . 1 + 2 . 0 ≥ – 6 ⇔ 3 ≥ -6 (luôn đúng).
(2) 1 + 4 . 0 > 4 ⇔ 1 > 4 (vô lí).
Suy ra (1; 0) không là nghiệm của hệ bất phương trình.
Vậy cặp số (0; 2) là nghiệm của hệ bất phương trình và cặp số (1; 0) không là nghiệm của hệ bất phương trình.
b)
Ta có:
+ Thay x = – 1, y = – 3 vào từng bất phương trình của hệ, ta có:
(3) ⇔ 4 . (– 1) + (– 3) ≤ – 3 ⇔ – 7 ≤ – 3 (luôn đúng);
(4) ⇔ (– 3) . (– 1) + 5 . (– 3) ≥ – 12 ⇔ – 12 ≥ – 12 (luôn đúng).
Suy ra (– 1; – 3) là nghiệm chung của hai bất phương trình trong hệ bất phương trình nên (– 1; – 3) là nghiệm của hệ bất phương trình.
+ Thay x = 0, y = – 3 vào từng bất phương trình của hệ đã cho ta có:
(3) ⇔ 4 . 0 + (– 3) ≤ – 3 ⇔ – 3 ≤ – 3 (luôn đúng);
(4) ⇔ (– 3) . 0 + 5 . (– 3) ≥ – 12 ⇔ – 15 ≥ – 12 (vô lý).
Suy ra (0; – 3) không là nghiệm của hệ bất phương trình.
Vậy (– 1; – 3) là nghiệm của hệ bất phương trình và (0; – 3) không là nghiệm của hệ bất phương trình.
Bài 2 trang 29 Toán lớp 10 Tập 1: Biểu diễn miền nghiệm của hệ bất phương trình:
Lời giải:
a)
+ Trên cùng một mặt phẳng tọa độ Oxy, vẽ các đường thẳng:
d1: x + 2y = – 4 là đường thẳng đi qua các điểm có tọa độ (0; -2) và (-4;0).
d2: – x + y = 5 là đường thẳng đi qua các điểm có tọa độ (0; 5) và (-5; 0).
Do tọa độ điểm O(0;0) không thỏa mãn các bất phương trình trong hệ nên miền nghiệm của từng bất phương trình trong hệ lần lượt là những nửa mặt phẳng không bị gạch không chứa điểm O(0;0) (không kể đường thẳng d1 và kể cả đường thẳng d2).
Miền nghiệm của hệ bất phương trình là phần mặt phẳng không bị gạch sọc kể cả đường biên d2 và không kể đường biên d1 như trong hình dưới.
b)
+ Trên cùng một mặt phẳng tọa độ Oxy, vẽ các đường thẳng:
d1: 4x – 2y = 8 là đường thẳng đi qua các điểm có tọa độ (0; -4) và (2;0).
d2: x = 0 là trục tung;
d3: y = 0 là trục hoành.
Lấy điểm M có tọa độ (-2;2) ta thấy M(-2;2) không thỏa mãn các bất phương trình trong hệ nên miền nghiệm của từng bất phương trình trong hệ lần lượt là những nửa mặt phẳng không bị gạch không chứa điểm M(-2;2) (kể cả hai trục tọa độ Ox, Oy và không kể đường thẳng d1).
Miền nghiệm của hệ bất phương trình là phần không gạch sọc trên hình bao gồm một phần trục tung, trục hoành và không bao gồm đường thẳng d1.
Lời giải:
* Quan sát Hình 12a, đặt tên các đường thẳng như trên hình:
+ Đường thẳng d1 đi qua điểm (2; 0) và song song với trục tung, do đó phương trình đường thẳng d1: x = 2.
+ Đường thẳng d2 đi qua điểm (1; 0) và song song với trục hoành, do đó phương trình đường thẳng d2: y = 1.
+ Giả sử d3: y = ax + b (a ≠ 0)
Ta thấy đường thẳng d3 đi qua 2 điểm (0; 1) và (1; 0). Thay tọa độ của mỗi điểm vào phương trình ta được: b = 1 và a + b = 0. Suy ra a = – 1 (t/m) và b = 1.
Khi đó, d3: y = – x + 1.
Do đó, ta thấy phần không gạch sọc trên hình chính là miền nghiệm của hệ c)
* Quan sát Hình 12b, đặt tên các đường thẳng như hình:
+ Đường thẳng d4 đi qua điểm (– 3; 0) và song song với trục tung nên d4: x = – 3.
+ Đường thẳng d5 đi qua điểm (0; – 1) và song song với trục hoành nên d5: y = – 1.
+ Đường thẳng d6 đi qua hai điểm (2; 0) và (0; 2).
Giả sử d6: y = ax + b (a ≠ 0)
Thay tọa độ các điểm (2; 0) và (0; 2) vào phương trình đường thẳng ta tìm được a = – 1 (t/m) và b = 2.
Khi đó, d6: y = – x + 2 ⇔ x + y = 2.
Do đó, ta thấy phần không gạch sọc trên hình chính là miền nghiệm của hệ a)
Vậy Hình 12a) biểu diễn cho miền nghiệm của hệ bất phương trình c) và Hình 12b) biểu diễn cho miền nghiệm của hệ bất phương trình a).
Lời giải:
Gọi số lượng mũ kiểu thứ nhất và kiểu thứ hai trong một ngày mà phân xưởng cần sản xuất để tiền lãi thu được cao nhất lần lượt là x (chiếc) và y (chiếc) (Điều kiện: )
Trong một ngày thị trường tiêu thụ tối đa 200 chiếc mũ kiểu thứ nhất và 240 chiếc mũ kiểu thứ hai nên ta có: 0 ≤ x ≤ 200; 0 ≤ y ≤ 240.
Tiền lãi khi bán một chiếc mũ kiểu thứ nhất là 24 nghìn và một chiếc mũ kiểu thứ hai là 15 nghìn nên tổng số tiền lãi khi bán mũ là T = 24x + 15y.
Nếu chỉ sản xuất toàn kiểu mũ thứ hai thì trong một giờ phân xưởng làm được 60 chiếc nên thời gian để làm một chiếc mũ kiểu thứ hai là (giờ).
Thời gian làm ra một chiếc kiểu mũ thứ nhất nhiều gấp hai lần thời gian làm ra một chiếc mũ kiểu thứ hai nên thời gian để làm một chiếc mũ kiểu thứ nhất là (giờ).
Thời gian để làm x chiếc mũ kiểu thứ nhất là (giờ).
Thời gian để làm y chiếc mũ kiểu thứ hai là (giờ).
Tổng thời gian để làm hai loại mũ trong một ngày là (giờ).
Vì một ngày phân xưởng làm việc 8 tiếng nên .
Khi đó bài toán đã cho đưa về: Tìm x, y là nghiệm của hệ bất phương trình
sao cho T = 24x + 15y có giá trị lớn nhất.
Trước hết, ta xác định miền nghiệm của hệ bất phương trình (I).
Miền nghiệm của hệ bất phương trình (I) là miền không bị gạch chéo tính cả biến hay chính là miền ngũ giác ACDEO với A(0; 240), C(120; 240), D(200; 80), E(200; 0), O(0; 0) (hình dưới).
(A là giao điểm của trục tung và đường thẳng y = 240 nên A(0; 240); C là giao điểm của đường thẳng y = 240 và 2x + y = 480 nên C(120; 240), D là giao điểm của đường thẳng 2x + y = 480 và x = 200 nên D(200; 80), E là giao điểm của trục hoành và đường thẳng x = 200 nên E(200; 0)).
Người ta chứng minh được: Biểu thức T = 24x + 15y có giá trị lớn nhất tại một trong các đỉnh của ngũ giác ACDEO.
Tính giá trị của biểu thức T = 24x + 15y tại các cặp số (x; y) là tọa độ các đỉnh của ngũ giác ACDEO:
+ Tại đỉnh A: T = 24 . 0 + 15 . 240 = 3 600;
+ Tại đỉnh C: T = 24 . 120 + 15 . 240 = 6 480;
+ Tại đỉnh D: T = 24 . 200 + 15 . 80 = 6 000;
+ Tại đỉnh E: T = 24 . 200 + 15 . 0 = 4 800;
+ Tại đỉnh O: T = 24 . 0 + 15 . 0 = 0
So sánh giá trị của biểu thức T tại các đỉnh, ta thấy T đạt giá trị lớn nhất bằng 6 480 khi x = 120 và y = 240 ứng với tọa độ đỉnh C.
Vậy để tiền lãi thu được là cao nhất, trong một ngày xưởng cần sản xuất 120 chiếc mũ kiểu thứ nhất và 240 chiếc mũ kiểu thứ hai.
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 3: Dấu của tam thức bậc hai
Bài 4: Bất phương trình bậc hai một ẩn
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều