Tìm số nguyên x  để biểu thức: a) A = 1/50-x (với x ≠ 50) đạt giá trị lớn nhất

Lời giải Bài 14* trang 39 SBT Toán 7 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

1 596 31/12/2022


Giải SBT Toán 7 Cánh diều Bài 1. Biểu thức số. Biểu thức đại số

Bài 14* trang 39 SBT Toán 7 Tập 1:

Tìm số nguyên x  để biểu thức:

a) A = 150x (với x ≠ 50) đạt giá trị lớn nhất.

b) B = 4x8 (với x ≠ 8) đạt giá trị nhỏ nhất.

Lời giải

a) Với x là số nguyên, x ≠ 50 ta xét hai trường hợp

• Trường hợp 1: Xét x ≤ 49, ta có 50 – x ≥ 1 > 0 nên A = 150x > 0.

Biểu thức A có tử và mẫu đều dương, tử không đổi nên A lớn nhất nếu mẫu 50 − x là số nguyên dương nhỏ nhất, tức là 50 − x = 1.

Suy ra x = 49, khi đó A = 1.

Trường hợp 2: Xét x ≥ 51, ta có 50 – x ≤ –1 < 0 nên A = 150x < 0.

Khi đó A < 1 (mà 1 là giá trị lớn nhất của A ở trường hợp 1) nên trường hợp này không thể có giá trị của x để A lớn nhất.

Vậy với các số x nguyên (x ≠ 50) thì giá trị lớn nhất của A bằng 1 khi x = 49.

b) Với x là số nguyên, x ≠ 8 ta xét hai trường hợp:

• Trường hợp 1: Xét x ≤ 7, ta có x – 8 ≤ –1 < 0 nên B = 4x8 < 0.

Số âm B có giá trị nhỏ nhất khi số đối của nó là lớn nhất.

Do đó 4x8 (với –(x – 8) ≥ 1 > 0) đạt giá trị lớn nhất.

Biểu thức trên có tử dương và mẫu dương nên đạt giá trị lớn nhất nếu mẫu –(x – 8) là số nguyên dương nhỏ nhất, tức là –(x – 8) = 1.

Suy ra x = 7, khi đó B = –4.

Trường hợp 2: Xét x ≥ 9, ta có x – 8 ≥ 1 > 0 nên B = 4x8 > 0.

Khi đó B > –4 (mà –4 là giá trị nhỏ nhất của B ở trường hợp 1) nên trường hợp này không thể có giá trị của x để B nhỏ nhất.

Vậy với các số x nguyên (x ≠ 8) thì giá trị nhỏ nhất của B là – 4 khi x = 7.

1 596 31/12/2022


Xem thêm các chương trình khác: