Gọi A là tập nghiệm của đa thức P(x), B là tập nghiệm của đa thức Q(x), C là tập nghiệm

Lời giải Bài 25 trang 14 SBT Toán 10 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 3,468 27/10/2024


Giải SBT Toán 10 Cánh diều Bài 2: Tập hợp. Các phép toán trên tập hợp

Bài 25 trang 14 SBT Toán 10 Tập 1: Gọi A là tập nghiệm của đa thức P(x), B là tập nghiệm của đa thức Q(x), C là tập nghiệm của đa thức P(x).Q(x). C là tập hợp nào sau đây?

A. AB;

B. A∩B;

C. A\B;

D. B\A.

Đáp án đúng là A

* Lời giải:

Xét P(x).Q(x) = 0

P(x)=0Q(x)=0

Do đó nghiệm của đa thức P(x).Q(x) là nghiệm của đa thức P(x) hoặc đa thức Q(x) nên C = AB.

* Phương pháp giải:

Ta có C là tập nghiệm của đa thức P(x).Q(x) nên nghiệm của cả 2 đa thức A và B sẽ là nghiệm của đa thức C

* Lý thuyết cần nắm thêm về tập hợp và các phép toán trên tập hợp:

Các khái niệm cơ bản về tập hợp

1.Tập hợp

• Có thể mô tả một tập hợp bằng một trong hai cách sau:

Cách 1. Liệt kê các phần tử của tập hợp;

Cách 2. Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp.

  • a S: phần tử a thuộc tập hợp S.
  • a S: phần tử a không thuộc tập hợp S.

Chú ý: Số phần tử của tập hợp S được kí hiệu là n(S).

2. Tập hợp con

• Nếu mọi phần tử của tập hợp T đều là phần tử của tập hợp S thì ta nói T là một tập hợp con (tập con) của S và viết là T S (đọc là T chứa trong S hoặc T là tập con của S).

- Thay cho T S, ta còn viết S T (đọc là S chứa T).

- Kí hiệu T S để chỉ T không là tập con của S.

Nhận xét:

- Từ định nghĩa trên, T là tập con của S nếu mệnh đề sau đúng:

x, x T x S.

- Quy ước tập rỗng là tập con của mọi tập hợp.

• Người ta thường minh họa một tập hợp bằng một hình phẳng được bao quanh bởi một đường kín, gọi là biểu đồ Ven.

Tài liệu VietJack

Minh họa T là một tập con của S như sau:

Tài liệu VietJack

Các tập hợp số

1. Mối quan hệ giữa các tập hợp số

- Tập hợp các số tự nhiên ℕ = {0; 1; 2; 3; 4; ....}.

- Tập hợp các số nguyên ℤ gồm các số tự nhiên và số nguyên âm:

ℤ = {...; – 3; – 2; – 1; 0; 1; 2; 3}.

- Tập hợp các số hữu tỉ ℚ gồm các số được viết dưới dạng phân số ab , với a, b ℤ, b ≠ 0.

Số hữu tỉ còn được biểu diễn dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn.

- Tập hợp các số thực ℝ gồm các số hữu tỉ và các số vô tỉ. Số vô tỉ là các số thập phân vô hạn không tuần hoàn.

- Mối quan hệ giữa các tập hợp số: ℕ ℝ.

Tài liệu VietJack

2. Các tập con thường dùng của ℝ

- Một số tập con thường dùng của tập số thực :

+ Khoảng:

a;b=x|a<x<b

Tài liệu VietJack

a;+=a|x>a

Tài liệu VietJack

;b=x|x<b

Tài liệu VietJack

;+

Tài liệu VietJack

+ Đoạn

a;b=x|axb

Tài liệu VietJack

+ Nửa khoảng

a;b=x|ax<b

Tài liệu VietJack

a;b=x|a<xb

Tài liệu VietJack

a;+=x|xa

Tài liệu VietJack

;b=x|xb

Tài liệu VietJack

- Kí hiệu + : Đọc là dương vô cực (hoặc dương vô cùng).

- Kí hiệu – : Đọc là âm vô cực (hoặc âm vô cùng).

- a, b gọi là các đầu mút của đoạn, khoảng hay nửa khoảng.

Xem thêm các bài viết liên quan hay, chi tiết:

Lý thuyết Tập hợp và các phép toán trên tập hợp - Toán 10

Giải Toán 10 Bài 2 (Cánh diều): Tập hợp. Các phép toán trên tập hợp

Trắc nghiệm Toán 10 Cánh diều Bài 2. Tập hợp. Các phép toán trên tập hợp (phần 2) có đáp án

1 3,468 27/10/2024


Xem thêm các chương trình khác: