Lý thuyết Tập hợp và các phép toán trên tập hợp - Toán 10 Kết nối tri thức

Với lý thuyết Toán lớp 10 Bài 2: Tập hợp và các phép toán trên tập hợp chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 10.

1 7,589 14/08/2023
Tải về


 Lý thuyết Toán 10 Bài 2. Tập hợp và các phép toán trên tập hợp - Kết nối tri thức

Bài giảng Toán 10 Bài 2. Tập hợp và các phép toán trên tập hợp - Kết nối tri thức

A. Lý thuyết

1. Các khái niệm cơ bản về tập hợp

1.1. Tập hợp

• Có thể mô tả một tập hợp bằng một trong hai cách sau:

Cách 1. Liệt kê các phần tử của tập hợp;

Cách 2. Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp.

  • a S: phần tử a thuộc tập hợp S.
  • a S: phần tử a không thuộc tập hợp S.

Chú ý: Số phần tử của tập hợp S được kí hiệu là n(S).

Ví dụ:

- Cho tập hợp A là tập hợp các số tự nhiên chia hết cho 2, lớn hơn 5 và nhỏ hơn 15.

+ Ta mô tả tập hợp A bằng hai cách như sau:

Cách 1: Liệt kê các phần tử của tập hợp: A = {6; 8; 10; 12; 14};

Cách 2: Chỉ ra tính chất đặc trưng của các phẩn tử: A = { | n ⁝ 2, 5 < n < 15}.

+ Tập hợp A có 5 phần tử, ta viết: n(A) = 5.

+ 10 thuộc tập hợp A, ta viết 10 A.

+ 15 không thuộc tập hợp A, ta viết 15 A.

Tập hợp không chứa phần tử nào được gọi là tập rỗng, kí hiệu là .

Ví dụ:

+ Tập hợp các nghiệm của phương trình x2 + 1 = 0 là tập rỗng;

+ Tập hợp những người sống trên Mặt Trời là tập rỗng.

1.2. Tập hợp con

• Nếu mọi phần tử của tập hợp T đều là phần tử của tập hợp S thì ta nói T là một tập hợp con (tập con) của S và viết là T S (đọc là T chứa trong S hoặc T là tập con của S).

- Thay cho T S, ta còn viết S T (đọc là S chứa T).

- Kí hiệu T S để chỉ T không là tập con của S.

Nhận xét:

- Từ định nghĩa trên, T là tập con của S nếu mệnh đề sau đúng:

x, x T x S.

- Quy ước tập rỗng là tập con của mọi tập hợp.

• Người ta thường minh họa một tập hợp bằng một hình phẳng được bao quanh bởi một đường kín, gọi là biểu đồ Ven.

Tài liệu VietJack

Minh họa T là một tập con của S như sau:

Tài liệu VietJack

Ví dụ: Cho các tập hợp: T = {2; 3; 5}, S = {2; 3; 5; 7; 9}, M = {2; 3; 4; 5}.

- Tập hợp T là tập con của tập hợp S (do mọi phần tử của T đều thuộc S).

- Tập hợp M không là tập hợp con của tập hợp S (do có phần tử 4 thuộc M nhưng không thuộc S).

1.3. Hai tập hợp bằng nhau       

- Hai tập hợp S và T được gọi là hai tập hợp bằng nhau nếu mỗi phần tử của T cũng là phần tử của tập hợp S và ngược lại. Kí hiệu là S = T.

- Nếu S T và T S thì S = T.

Ví dụ: Cho 2 tập hợp: S = {n | n là bội chung của 2 và 3; n < 20} và T = {n | n là bội của 6; n < 20}.

Ta có: 2 = 2, 3 = 3

BCNN(2; 3) = 2.3 = 6

BC(2; 3) = B(6) ={0; 6; 12; 18}

S = {0; 6; 12; 18}

Ta có các bội của 6 và nhỏ hơn 20 là: 0; 6; 12; 18.

T = {0; 6; 12; 18}.

Vậy S = T.

2. Các tập hợp số

2.1. Mối quan hệ giữa các tập hợp số

- Tập hợp các số tự nhiên ℕ = {0; 1; 2; 3; 4; ....}.

- Tập hợp các số nguyên ℤ gồm các số tự nhiên và số nguyên âm:

ℤ = {...; – 3; – 2; – 1; 0; 1; 2; 3}.

- Tập hợp các số hữu tỉ ℚ gồm các số được viết dưới dạng phân số ab , với a, b ℤ, b ≠ 0.

Số hữu tỉ còn được biểu diễn dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn.

- Tập hợp các số thực ℝ gồm các số hữu tỉ và các số vô tỉ. Số vô tỉ là các số thập phân vô hạn không tuần hoàn.

- Mối quan hệ giữa các tập hợp số: ℕ ℝ.

Tài liệu VietJack

Ví dụ: Cho tập hợp B = {– 1; 2; 4; 10}.

- Tập hợp B chứa số – 1 không phải là số tự nhiên nên B không là tập con của ℕ.

- Tập hợp B gồm các số nguyên: – 1; 2; 4; 10 nên B là tập con của ℤ.

- Các số nguyên cũng là các số hữu tỉ và cũng là các số thực, nên B cũng là tập con của ℚ và ℝ.

2.2. Các tập con thường dùng của ℝ

- Một số tập con thường dùng của tập số thực:

+ Khoảng:

a;b=x|a<x<b

Tài liệu VietJack

a;+=a|x>a

Tài liệu VietJack

;b=x|x<b

Tài liệu VietJack

;+

Tài liệu VietJack

+ Đoạn

a;b=x|axb

Tài liệu VietJack

+ Nửa khoảng

a;b=x|ax<b

Tài liệu VietJack

a;b=x|a<xb

Tài liệu VietJack

a;+=x|xa

Tài liệu VietJack

;b=x|xb

Tài liệu VietJack

- Kí hiệu + : Đọc là dương vô cực (hoặc dương vô cùng).

- Kí hiệu – : Đọc là âm vô cực (hoặc âm vô cùng).

- a, b gọi là các đầu mút của đoạn, khoảng hay nửa khoảng.

Ví dụ:

+ Ta có: 5 < x ≤ 10 thì ta viết x (5; 10].

+ Ta có: D = {x | x < 3} = (– ; 3).

3. Các phép toán trên tập hợp

3.1. Giao của hai tập hợp

Tập hợp gồm các phần tử thuộc cả hai tập hợp S và T gọi là giao của hai tập hợp S và T, kí hiệu là S T.

S ∩ T = {x | x S và x T}.

Tài liệu VietJack

Ví dụ: Cho 2 tập hợp: A = {5; 7; 8} và B = {1; 2; 4; 5; 8}.

Giao của 2 tập hợp trên là tập hợp C = A B = {5; 8}.

3.2. Hợp của hai tập hợp

- Tập hợp gồm các phần tử thuộc tập hợp S hoặc thuộc tập hợp T gọi là hợp của hai tập hợp S và T, kí hiệu là S ∪ T.

S T = {x | x S hoặc x T}.

Tài liệu VietJack

Ví dụ: Cho 2 tập hợp: S = {1; 2; 3; 5} và T = {2; 4; 6; 7}.

Tập hợp là hợp của hai tập hợp trên là K = S T = {1; 2; 3; 4; 5; 6; 7}.

3.3. Hiệu của hai tập hợp

- Hiệu của hai tập hợp S và T là tập hợp gồm các phần tử thuộc S nhưng không thuộc T, kí hiệu là S \ T.

S \ T = {x | x S và x T}.

Tài liệu VietJack

- Nếu T S thì S \ T được gọi là phần bù của T trong S, kí hiệu CST.

Tài liệu VietJack

Chú ý: .CsS=

Ví dụ:  Cho các tập hợp: S = {1; 2; 3; 4; 5; 7; 8}; T = {4; 5; 6; 7; 8; 9}; X = {x | x là các số nguyên dương nhỏ hơn 9}. Tìm các tập hợp sau: S \ T; T \ S; X \ S.

Ta có: S \ T = {1; 2; 3};

T \ S = {6; 9}.

Ta lại có: X = {1; 2; 3; 4; 5; 6; 7; 8}

Vì mọi phần tử của tập S đều thuộc tập X nên S X.

Phần bù của S trong X là X \ S = CXS = {6}.

B. Bài tập tự luyện

B1. Bài tập tự luận

Bài 1. Xác định các tập hợp sau và biểu diễn chúng trên trục số.

a) [– 3; 1) (0; 4];

b) (− 2; 15) (3; + ∞);

c) (− 12; 3] ∩ [− 1; 4];

d) \ (2; + ).

Hướng dẫn giải

a) [– 3; 1) (0; 4] = [– 3; 4]

Tài liệu VietJack

b) (− 2; 15) (3; + ∞) = (− 2; +∞)

Tài liệu VietJack

c) (− 12; 3] ∩ [− 1; 4] = [− 1; 3]

Tài liệu VietJack

d) \ (2; + ) = (; 2]

Tài liệu VietJack

Bài 2. Hãy viết tập hợp sau và cho biết mỗi tập hợp có bao nhiêu phần tử.

a) A là tập hợp các số tự nhiên chia hết cho 4 và nhỏ hơn 20.

b) B là tập hợp các tỉnh thuộc vùng Bắc Trung Bộ.

Hướng dẫn giải

a) Các số tự nhiên chia hết cho 3 và nhỏ hơn 20 là: 0, 4, 8, 12, 16.

Ta viết tập hợp A bằng cách liệt kê các phần tử như sau:

A = {0; 4; 8; 12; 16}.

Tập hợp A có 7 phần tử, ta viết n(A) = 5.

Ngoài ra ta cũng có thể viết tập hợp A bằng cách chỉ ra tính chất đặc trưng là:

A = {x | x ⁝ 4; x < 20}.

b) Các tỉnh thuộc vùng Bắc Trung Bộ là: Thanh Hóa, Nghệ An, Hà Tĩnh, Quảng Bình, Quảng Trị.

Do đó: B = {Thanh Hóa; Nghệ An; Hà Tĩnh; Quảng Bình; Quảng Trị}.

Tập hợp B có 5 phần tử, ta viết n(B) = 5.

Bài 3. Cho các tập hợp: A=x|x    3,x<10  B=x|x      2,x<10 .

a) Viết tập hợp A và B bằng cách liệt kê các phần tử của tập hợp.

b) Xác định các tập hợp A B, A B, A \ B, B \ A.

Hướng dẫn giải

a) Vì A=x|x    3,x<10 nên A là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 10.

Do đó: A = {0; 3; 6; 9}.

B=x|x    2,x<10  nên B là tập hợp các số tự nhiên chia hết cho 2 và nhỏ hơn 10.

Do đó: B = {0; 2; 4; 6; 8}.

b) A B = {x | x A và x B} = {0; 6};

A B = {x | x A hoặc x B} = {0; 2; 3; 4; 6; 8; 9};

A \ B = {x | x A và x B} = {3; 9};

B \ A = {x | x B và x A} = {2; 4; 8}.

B2. Bài tập trắc nghiệm

Bài 4. Cho A = {0; 1; 2; 3; 4}; B = {2; 3; 4; 5; 6}. Tìm tập A\BB\A

A. {5; 6};

B. {1; 2};

C. {2; 3; 4};

D. {0; 1; 5; 6}.

Hướng dẫn giải

Đáp án đúng là: D

Ta có tập hợp A\B là tập các phần tử thuộc tập A nhưng không thuộc tập B nên A\B={0; 1} .

Tập hợp B\A là tập các phần tử thuộc tập B nhưng không thuộc tập A nên B\A={5;​​​​​​ 6} .

.A\BB\A=0;​ ​1;​ 5;​ 6

Bài 5. Một lớp học có 16 học sinh học giỏi môn Toán; 12 học sinh học giỏi môn Văn; 8 học sinh vừa học giỏi môn Toán và Văn; 19 học sinh không học giỏi cả hai môn Toán và Văn. Hỏi lớp học có bao nhiêu học sinh?

A. 31;

B. 54;

C. 39;

D. 47.

Hướng dẫn giải

Đáp án đúng là: C

Gọi A là tập hợp gồm các học sinh trong lớp; B là tập số học sinh giỏi Toán; C là tập số học sinh giỏi Văn; D là tập số học sinh không giỏi cả 2 môn Toán và Văn.

Khi đó n(B) = 16, n(C) = 12, n(BC) = 8, n(D) = 19.

Số học sinh trong lớp giỏi ít nhất một trong hai môn Toán hoặc Văn là:

n(BC) = n(B) + n(C) - n(BC) = 16 + 12 – 8 = 20.

Ta có A = (BC)D

Số học sinh trong lớp là: n(A) = n(BC) + n(D) = 20 + 19 = 39 (học sinh).

Được thể hiện trong biểu đồ Ven như sau:

Tài liệu VietJack

Bài 6. Cho hai tập A = [–1 ; 3); B = [a; a + 3]. Với giá trị nào của a thì .

A. a3a<4 ;

B. a>3a<4 ;

C. a3a4 ;

D. a>3a4 .

Hướng dẫn giải

Đáp án đúng là: A

.AB=a3a+3<1a3a<4

Xem thêm các bài tóm tắt lý thuyết Toán 10 Kết nối tri thức hay, chi tiết khác:

Tổng hợp lý thuyết Chương 1

Lý thuyết Bài 3. Bất phương trình bậc nhất hai ẩn

Lý thuyết Bài 4. Hệ bất phương trình bậc nhất hai ẩn

Tổng hợp lý thuyết Chương 2

Lý thuyết Bài 5. Giá trị lượng giác của một góc từ 0° đến 180°

1 7,589 14/08/2023
Tải về


Xem thêm các chương trình khác: