Lý thuyết Các khái niệm mở đầu - Toán 10 Kết nối tri thức
Với lý thuyết Toán lớp 10 Bài 7: Các khái niệm mở đầu, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 10.
Lý thuyết Toán 10 Bài 7: Các khái niệm mở đầu - Kết nối tri thức
A. Lý thuyết
– Vectơ là một đoạn thẳng có hướng, nghĩa là, trong hai điểm mút của đoạn thẳng, đã chỉ rõ điểm đầu, điểm cuối.
– Độ dài vectơ là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó.
Chú ý:
+ Vectơ có điểm đầu A và điểm cuối B được kí hiệu là , đọc là vectơ AB.
+ Để vẽ một vectơ, ta vẽ đoạn thẳng nối điểm đầu và điểm cuối của nó, rồi đánh dấu mũi tên ở điểm cuối.
+ Vectơ còn được kí hiệu là , , , , …
+ Độ dài của vectơ , tương ứng được kí hiệu là , .
Ví dụ: Cho hình vuông ABCD với cạnh có độ dài bằng 1. Tính độ dài vectơ , .
Hướng dẫn giải
Vì ABCD là hình vuông nên .
Áp dụng định lý Pythagore cho tam giác ABD vuông tại A, có các cạnh góc vuông AB = AD = 1.
Ta có: BD2 = AB2 + AD2.
Suy ra: BD2 = 12 + 12 = 2 ⇒ BD = .
Do đó = BD =
Mặt khác Vì ABCD là hình vuông nên hai đường chéo BD và AC bằng nhau.
Vì vậy AC = BD = .
Do đó : = AC = ;
Vậy = ; = .
2. Hai vectơ cùng phương, cùng hướng, bằng nhau.
+ Đường thẳng đi qua điểm đầu và điểm cuối của một vectơ được gọi là giá của vectơ đó.
+ Hai vectơ được gọi là cùng phương nếu chúng có giá song song hoặc trùng nhau.
+ Đối với hai vectơ cùng phương thì chúng cùng hướng hoặc ngược hướng.
+ Hai vectơ và được gọi là bằng nhau, kí hiệu là = , nếu chúng có cùng độ dài và cùng hướng.
Ví dụ:
Trong hình trên đường thẳng m đi qua điểm đầu và điểm cuối của vectơ , nên đường thẳng m gọi là giá của vectơ .
Tương tự, đường thẳng n là giá của hai vectơ và .
Đường thẳng m và n song song với nhau nên ba vectơ và và là các vectơ cùng phương.
và cùng phương nhưng ngược hướng; và cùng phương và cùng hướng.
Hai vectơ và cùng hướng, ngoài ra chúng có độ dài bằng nhau nên = .
Chú ý:
+ Ta cũng xét các vectơ điểm đầu và điểm cuối trùng nhau (chẳng hạn , ), gọi là các vectơ–không.
+ Ta quy ước vectơ–không có độ dài bằng 0, cùng hướng (do đó cùng phương) với mọi vectơ.
+ Các vectơ–không có cùng độ dài và cùng hướng nên bằng nhau và được kí hiệu chung là .
+ Với mỗi điểm O và vectơ cho trước, có duy nhất điểm A sao cho .
Nhận xét: Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi và cùng phương.
Chú ý: Ta có thể dùng vectơ để biểu diễn các đại lượng như lực, vận tốc, gia tốc. Hướng của vectơ chỉ hướng của đại lượng, độ dài của vectơ thể hiện cho độ lớn của đại lượng và được lấy tỉ lệ với độ lớn của đại lượng.
Ví dụ: Một vật A thả chìm hoàn toàn dưới đáy một cốc chất lỏng. Khi đó biểu diễn lực đẩy Ác–si–mét và biểu diễn trọng lực tác dụng lên vật A.
và tác dụng lên vật A theo phương thẳng đứng, hai lực này cùng phương nhưng ngược hướng. Do vật chìm hoàn toàn dưới đáy cốc nên trọng lực có độ lớn lớn hơn lực đẩy Ác–si–mét , cụ thể .
B. Bài tập tự luyện
B1. Bài tập trắc nghiệm
Câu 1. Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC và P là trung điểm của BC.
Phát biểu nào dưới đây là sai.
A. ;
B. cùng hướng với ;
C. ;
D. .
Hướng dẫn giải
Đáp án đúng là D
+) Xét tam giác ABC, có:
M là trung điểm AB
N là trung điểm của AC
⇒ MN là đường trung bình của tam giác ABC
⇒ MN // BC và MN = BC
Mà BP = PC = BC (P là trung điểm của BC)
⇒ MN = CP = PB (1)
Vì MN // BC nên MN // CP. Khi đó và cùng phương. Suy ra và cùng hướng (2)
Từ (1) và (2) suy ra = . Do đó đáp án A đúng.
Câu 2. Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8 cm và 6 cm. Tính độ dài vectơ .
A. 10 cm;
B. 3 cm;
C. 4 cm;
D. 5cm.
Hướng dẫn giải
Đáp án đúng là D
Gọi O là giao điểm của hai đường chéo AC và BD. Khi đó O là trung điểm của AC, cũng là trung điểm của BD.
⇒ AO = OC =
⇒ BO = OD =
Xét tam giác AOB vuông tại O, có:
AB2 = AO2 + BO2 (định lí Py – ta – go)
⇔ AB2 = 42 + 32 = 16 + 9 = 25
⇔ AB = 5 (cm)
Vậy độ dài là 5cm.
Câu 3. Cho hình vẽ sau:
Cặp vectơ nào cùng hướng?
Hướng dẫn giải
Đáp án đúng là A
B2. Bài tập tự luận
Câu 4. Cho hình vẽ:
a) Chỉ ra các vectơ cùng phương.
b) Chỉ ra các vectơ cùng hướng, ngược hướng.
c) Chỉ ra các vectơ bằng nhau.
Hướng dẫn giải
a) Ta nối các điểm đầu và điểm cuối của hai vectơ và để được tứ giác ABCD.
Xét tứ giác ABCD có:
AD // BC (vì AD và BC nằm trên hai dòng kẻ phân biệt)
AD = BC (cùng bằng 3 đơn vị)
Suy ra ABCD là hình bình hành.
Suy ra AB // DC.
Khi đó, ta có giá của hai vectơ và song song với nhau nên hai vectơ và cùng phương.
Ba vectơ , , có giá nằm trên các dòng kẻ dọc nên giá của các vectơ này trùng nhau hoặc song song, vì vậy ba vectơ này cùng phương.
Vectơ không cùng phương với vectơ nào.
Vậy, hai vectơ và là hai vectơ cùng phương ; ba vectơ , , đôi một cùng phương.
b) Hai vectơ và cùng hướng.
Hai vectơ và ngược hướng.
Hai vectơ và ngược hướng.
Hai vectơ và cùng hướng.
Vậy các cặp vectơ cùng hướng là: và ; và . Các cặp vectơ ngược hướng là: và ; và .
c) Vì ABCD là hình bình hành nên AB = DC.
Hai vectơ và cùng hướng. Mặt khác ; , suy ra .
Vậy, = .
Hai vectơ và cùng hướng, tuy nhiên không cùng độ dài: , . Vì vậy và không bằng nhau.
Câu 5. Chứng minh rằng tứ giác ABCD là một hình bình hành khi và chỉ khi .
Hướng dẫn giải
– Giả sử ABCD là hình bình hành. Khi đó AB // DC và AB = DC.
Vì AB // DC nên và cùng phương. Từ hình vẽ dễ thấy và cùng hướng.
Vì AB = DC nên .
Vậy = .
– Giả sử = . Khi đó và cùng hướng và .
Từ và cùng hướng suy ra chúng cùng phương, hay AB // DC.
Từ suy ra AB = DC.
Vậy ABCD là hình bình hành.
Vậy tứ giác ABCD là một hình bình hành khi và chỉ khi = .
Xem thêm tóm tắt lý thuyết Toán lớp 10 sách Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 8: Tổng và hiệu của hai vectơ
Lý thuyết Bài 9: Tích vô hướng của một vectơ với một số
Lý thuyết Bài 10: Vectơ trong mặt phẳng tọa độ
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức