Lý thuyết Nhị thức Newton - Toán 10 Kết nối tri thức
Với lý thuyết Toán lớp 10 Bài 25: Nhị thức Newton, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 10.
Lý thuyết Toán 10 Bài 25: Nhị thức Newton - Kết nối tri thức
A. Lý thuyết Nhị thức Newton
Nhận xét: Các tích nhận được từ sơ đồ hình cây của một tích các đa thức giống như cách lấy ra một đơn thức từ mỗi đa thức rồi nhân lại với nhau. Tổng của chúng cho ta khai triển của tích các đa thức đã cho.
Ví dụ: Sơ đồ hình cây của khai triển: (a + b)4
Ta có: (a + b)4 = (a + b).(a + b).(a + b).(a + b)
+ Từ một điểm gốc, kẻ các mũi tên, mỗi mũi tên tương ứng với một đơn thức của nhị thức thứ nhất là a và b.
+ Từ ngọn của mỗi mũi tên đã xây dựng, kẻ các mũi tên, mỗi mũi tên tương ứng với một đơn thức của nhị thức thứ hai là a và b.
+ Làm tương tự cho đến nhị thức thứ tư.
+ Tại ngọn của mũi tên xây dựng tại bước cuối cùng, ta ghi lại các tích của các nhãn của các mũi tên đi từ điểm gốc đến đầu mút đó.
Nhị thức Newton:
Ví dụ:
a) Khai triển (1 + x)4 ;
b) Khai triển (2x – 3)5.
Hướng dẫn giải
a) Ta có :
(1 + x)4 = 14 + 13.x + 12x2 + 1.x3 + >x4
= 14 + 4.13x + 6.12.x2 + 4.1.x3 + x4
= 1 + 4x + 6x2 + 4x3 + x4.
Vậy (1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4.
b) Ta có :
(x + 3)5 = x5 + x4.3 + x3.32 + >x2.33 + x.34 + 35
= x5 + 5x4.3 + 10x3.32 + 10x2.33 + 5x.34 + 35
= x5 + 15x4 + 90x3 + 270x2 + 405x + 243.
Nhận xét: Các công thức khai triển (a + b)n với n ∈ {4 ; 5}, là một công cụ hiệu quả để tính chính xác hoặc xấp xỉ một số đại lượng mà không cần dùng máy tính.
Ví dụ: Dùng hai số hạng đầu của khai triển (1 + 0,02)5 để tính giá trị gần đúng của 1,025.
Hướng dẫn giải
Ta có: (1 + 0,02)5 = 15 + 5.14. 0,02 + 10.13.0,022 + 10.12.0,023 + 5.1.0,024 + 0,025
= 1 + 0,1 + 10.13.0,022 + 10.12.0,023 + 5.1.0,024 + 0,025.
Vì 1 + 0,1 = 1,1 nên (1 + 0,02)5 ≈ 1,1, tức là 1,025 ≈ 1,1.
Vậy 1,025 ≈ 1,1.
B. Bài tập Nhị thức Newton
1. Bài tập trắc nghiệm
Câu 1. Khai triển (a + b)5 có tất cả bao nhiêu số hạng
A. 4;
B. 5;
C. 6;
D. 7.
Đáp án: C
Giải thích:
Ta có: (a + b)5 = a5 + 5a4b +10a3b2 + 10a2b3 + 5a4b + b5
Khai triển có 6 phần tử.
Câu 2. Cho khai triển (x + 3)5 = x5 + 15x4 + 90x3 + 270x2 + 405x + 243. Tổng các hệ số của khai triển đã cho là:
A. 987;
B. 784;
C. 1000;
D. 1024.
Đáp án: D
Giải thích:
S = 1 + 15 + 90 + 270 + 405 + 243 = 1024.
Câu 3. Ta có khai triển đa thức: (x – 1)4 = x4 − 4x3 + 6x2 − 4x + 1. Hệ số của hạng tử có chứa x3 là:
A. 4;
B. – 4;
C. 6;
D. – 6
Đáp án: C
Giải thích:
Ta có: (x – 1)4 = x4 − 4x3 + 6x2 − 4x + 1.
Số hạng chứa x3 là – 4x3
Do đó hệ số của hạng tử chứa x3 là – 4.
Câu 4. Khai triển đa thức (x + 3)4
A. x4 + 4x3 + 6x2 + 4x + 1;
B. x4 + 12x3 + 54x2 + 108x + 81;
C. x4 + 5x3 + 10x2 + 5x + 81;
D. x4 − 12x3 + 54x2 − 108x + 81.
Đáp án: B
Giải thích:
Áp dụng công thức triển khai của (a + b)4 với a = x, b = 3 ta có:
(x + 3)4 = x4 + 4x3 .3 + 6x2.32 + 4x.33 + 34 = x4 + 12x3 + 54x2 + 108x + 81.
Câu 5. Khai triển đa thức: (2x - 1)4
A. 16x4 − 32x3 + 24x2 − 8x + 1;
B. 16x4 + 32x3 + 24x2 + 8x + 1;
C. 16x4 − 32x3 + 24x2 + 8x + 1;
D. 16x4 + 32x3 + 24x2 − 8x + 1.
Đáp án: A
Giải thích:
Áp dụng công thức triển khai của (a + b)4 với a = 2x, b = −1 ta có:
(2x − 1)4 = (2x)4 + 4(2x)3.(−1) + 6(2x)2.(−1)2 + 4.2x.(−1)3 + (−1)4
= 16x4 − 32x3 + 24x2 − 8x + 1.
2. Bài tập tự luận
Bài 1: Khai triển các đa thức sau:
a) (2x – 1)4 ;
b) (x + 4)5 + (x – 4)5.
Hướng dẫn giải
a) Ta có: (2x – 1)4 = (2x)4 + 4(2x)3.(–1) + 6(2x)2.(–1)2 + 4.2x.(–1)3 + (–1)4.
= 16x4 – 32x3 + 24x2 – 8x + 1.
Vậy : (2x – 1)4 = 16x4 – 32x3 + 24x2 – 8x + 1.
b) Ta có:
(x + 4)5 + (x – 4)5 = [x5 + 5x4.4 + 10.x3.42 + 10.x2.43 + 5.x.44 + 45] + [x5 + 5x4.(–4) + 10.x3.(–4)2 + 10.x2.(–4)3 + 5.x.(–4)4 + (–4)5]
= [x5 + 20x4 + 160x3 + 640x2 + 1280x + 1024] + [x5 – 20x4 + 160x3 – 640x2 + 1280x –1024]
= x5 + 20x4 + 160x3 + 640x2 + 1280x + 1024 + x5 – 20x4 + 160x3 – 640x2 + 1280x –1024 = 2x5 + 320x3 + 2560x.
Vậy (x + 4)5 + (x – 4)5 = 2x5 + 320 x3 + 2560x.
Bài 2 :
a) Dùng hai số hạng đầu của khai triển (2 + 0,01)4 để tính giá trị gần đúng của 2,014.
b) Dùng máy tính cầm tay để tính giá trị của 2,014 và tính sai số tuyệt đối của giá trị gần đúng nhận được ở câu a.
Hướng dẫn giải
a) Ta có:(2 + 0,01)4 = 24 + 4.23.0,01 + 6.22.0,012 + 4.2.0,013 + 0,014
= 16 + 0,32 + 6.22.0,012 + 4.2.0,013 + 0,014
Vì 16 + 0,32 = 16,32 nên (2 + 0,01)4 ≈ 16,32, tức là 2,014 ≈ 16,32.
Vậy 2,014 ≈ 16,32.
b) Dùng máy tính cầm tay ta tính được giá trị của 2,014 = 16,32240801....
Ta có: 16,32 < 2,014 <16,33
Suy ra: |16,32 – 2,014| < |16,33 – 16, 32| = 0,01.
Vậy với giá trị gần đúng 16,32 thì sai số tuyệt đối không vượt quá 0,01.
Xem thêm tóm tắt lý thuyết Toán lớp 10 sách Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 24: Hoán vị, chỉnh hợp và tổ hợp
Lý thuyết Bài 26: Biến cố và định nghĩa cổ điển của xác suất
Lý thuyết Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức