Lý thuyết Mệnh đề - Toán 10 Kết nối tri thức

Với lý thuyết Toán lớp 10 Bài 1: Mệnh đề, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 10.

1 9,856 15/08/2023
Tải về


Lý thuyết Toán 10 Bài 1: Mệnh đề - Kết nối tri thức

Bài giảng Toán 10 Bài 1: Mệnh đề - Kết nối tri thức

A. Lý thuyết Mệnh đề

1. Mệnh đề, mệnh đề chứa biến

1.1. Mệnh đề

- Những khẳng định có tính đúng hoặc sai gọi là mệnh đề logic (gọi tắt là mệnh đề). Những câu không xác định được tính đúng sai không phải là mệnh đề.

- Mỗi mệnh đề phải hoặc đúng hoặc sai. Một mệnh đề không thể vừa đúng vừa sai.

Ví dụ 1:

Câu “Hoa hồng rất đẹp nhất trong các loài hoa” là câu khẳng định nhưng không xác định được tính đúng sai nên câu này không là mệnh đề.

Câu “Bây giờ là mấy giờ?” là một câu hỏi không xác định được tính đúng sai nên câu này không là mệnh đề.

Câu “8 + 1 > 9” là một câu khẳng định có thể xác định được tính đúng sai nên câu này là mệnh đề.

Câu “Số 1 tỉ là số rất lớn” là một câu khẳng định tuy nhiên câu này mang tính quan điểm cá nhân không xác định đước tính đúng sai nên không là mệnh đề.

Chú ý:

- Người ta thường sử dụng các chữ cái P, Q, R, … để biểu thị các mệnh đề.

- Những mệnh đề liên quan đến toán học được gọi là mệnh đề toán học.

- Những câu nghi vấn, câu cảm thán, câu cầu khiến không phải là mệnh đề.

Ví dụ 2:

+ “Hà Nội là thủ đô của Việt Nam” là một mệnh đề nhưng không phải mệnh đề toán học vì không phải sự kiện trong toán học.

+ “Số π là một số hữu tỉ” là mệnh đề toán học.

1.2. Mệnh đề chứa biến

- Mệnh đề chứa biến là một câu khẳng định chứa biến nhận giá trị trong một tập D nào đó mà với mỗi giá trị của biến thuộc vào D ta được một mệnh đề.

- Ta thường kí hiệu mệnh đề chứa biến n là P(n); mệnh đề chứa biến x, y là P(x, y), ….

Ví dụ:

+ “Với mọi giá trị thực của biến x, |x| x”: không phải là mệnh đề chứa biến vì:

Ta có |x| x với mọi giá trị thực của biến x nên đây là khẳng định đúng. Do đó phát biểu này là một mệnh đề không phải mệnh đề chứa biến.

+ “5n chia hết cho 2” là mệnh đề chứa biến.

Khi n = 4 thì mệnh đề này là mệnh đề đúng, khi n = 5 thì mệnh đề này là mệnh đề sai.

2. Mệnh đề phủ định

- Để phủ định một mệnh đề P, người ta thường thêm (hoặc bớt) từ “không” hoặc “không phải” vào trước vị ngữ của mệnh đề P. Ta kí hiệu mệnh đề phủ định của mệnh đề P là P¯.

- Mệnh đề P và mệnh đề P¯ là hai phát biểu trái ngược nhau. Nếu P đúng thì P¯ sai, còn nếu P sai thì P¯ đúng.

Ví dụ: “5 không chia hết cho 3” là mệnh đề phủ định của mệnh đề “5 chia hết cho 3”;

“3 là hợp số” là mệnh đề phủ định của mệnh đề “3 không là hợp số”.

3. Mệnh đề kéo theo, mệnh đề đảo

3.1. Mệnh đề kéo theo

- Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo và kí hiệu là P Q.

- Các định lí toán học là những mệnh đề đúng và thường có dạng P Q. Khi đó ta nói:

P là giả thiết của định lí, Q là kết luận của định lí hoặc

“P là điều kiện đủ để có Q”, hoặc “Q là điều kiện cần để có P”.

Chú ý: Mệnh đề P Q chỉ sai khi P đúng và Q sai. Do đó ta chỉ cần xét tính đúng sai của mệnh đề P Q khi P đúng. Khi đó, nếu Q đúng thì P Q đúng, nếu Q sai thì P Q sai.

Ví dụ: Cho 2 mệnh đề: P: “9 chia hết cho 9”; Q: “9 chia hết cho 3”.

“Nếu 9 chia hết cho 9 thì 9 chia hết cho 3” là mệnh đề kéo theo của P và Q.

P là mệnh đề đúng và Q là mệnh đề đúng nên mệnh đề kéo theo P Q là mệnh đề đúng.

3.2. Mệnh đề đảo

- Mệnh đề Q P được gọi là mệnh đề đảo của mệnh đề P Q.

Nhận xét: Mệnh đề đảo của một mệnh đề đúng không nhất thiết là đúng.

Ví dụ: Cho 2 mệnh đề: P: “n = 0”; Q: “n là số nguyên”.

Mệnh đề kéo theo P Q được phát biểu là: “Nếu n = 0 thì n là số nguyên”.

Mệnh đề đảo Q P được phát biểu là “Nếu n là số nguyên thì n = 0”.

- Mệnh đề P Q là mệnh đề đúng còn mệnh đề Q P không đúng.

4. Mệnh đề tương đương

- Mệnh đề “P nếu và chỉ nếu Q” được gọi là một mệnh đề tương đương và kí hiệu P Q .

Nhận xét:

- Nếu cả hai mệnh đề Q P và P Q đều đúng thì hai mệnh đề tương đương P Q đúng. Khi đó ta nói “P tương đương với Q” hoặc “P là điều kiện cần và đủ để có Q” hoặc “P khi và chỉ khi Q”.

Ví dụ: Cho 2 mệnh đề: P: “Tứ giác ABCD là hình bình hành”; Q: “Tứ giác ABCD có hai cặp cạnh đối song song”.

“Nếu tứ giác ABCD là hình bình hành thì tứ giác ABCD có hai cặp cạnh đối song song” là mệnh đề P Q.

“Nếu tứ giác ABCD có hai cặp cạnh đối song song thì tứ giác ABCD là hình bình hành” là mệnh đề Q P.

Hai mệnh đề này đều đúng nên P và Q là hai mệnh đề tương đương.

Khi đó mệnh đề P Q được phát biểu như sau: “Tứ giác ABCD là hình bình hành khi và chỉ khi tứ giác ABCD có hai cặp cạnh đối song song”.

5. Mệnh đề có chứa kí hiệu

- Kí hiệu đọc là “với mọi”.

- Kí hiệu đọc là “có một” hoặc “tồn tại”.

- Cho mệnh đề “Px,xD”.

+ Phủ định của mệnh đề “xD,Px” là mệnh đề “xD,Px¯”.

+ Phủ định của mệnh đề “xD,Px” là mệnh đề “xD,Px¯”.

Chú ý: 

+ Phát biểu “Với mọi số tự nhiên n” có thể kí hiệu là n.

+ Phát biểu “Tồn tại số tự nhiên n” có thể kí hiệu là n.

Ví dụ:

Phủ định của mệnh đề “x,x2+1=0” là mệnh đề: “x,x2+10”.

B. Bài tập Mệnh đề

B1. Bài tập tự luận

Bài 1. Cho tam giác ABC. Xét các mệnh đề:

P: “Tam giác ABC có 3 cạnh bằng nhau”.

Q: “Tam giác ABC là tam giác đều”.

Hai mệnh đề P và Q có tương đương không? Nếu có, phát biểu bằng nhiều cách?

Hướng dẫn giải

+ P Q: “Nếu tam giác ABC có 3 cạnh bằng nhau thì tam giác ABC là tam giác đều”. Đây là mệnh đề đúng.

+ Q P: “Nếu tam giác ABC là tam giác đều thì tam giác ABC có 3 cạnh bằng nhau”. Đây là mệnh đề đúng.

Do đó: P và Q là hai mệnh đề tương đương.

Ta phát biểu mệnh đề P Q như sau:

+ “Tam giác ABC có 3 cạnh bằng nhau tương đương với tam giác ABC là tam giác đều”.

+ “Tam giác ABC có 3 cạnh bằng nhau khi và chỉ khi tam giác ABC là tam giác đều”.

+ “Tam giác ABC có 3 cạnh bằng nhau là điều kiện cần và đủ để có tam giác ABC là tam giác đều”.

Bài 2. Trong các phát biểu dưới đây, phát biểu nào là mệnh đề?

a) “Số 150 chia hết cho 3”;

b) “x + 3 = 0”;

c) “Sách giáo khoa Toán 10 Kết nối tri thức rất hay”;

d) “Tết nguyên đán là tết cổ truyền của người Việt Nam”

Hướng dẫn giải

a) “Số 150 chia hết cho 3” là một phát biểu đúng vì 150 : 3 = 50 nên đây là một mệnh đề.

b) “x + 3 = 0” là một phát biểu chưa thể khẳng định được tính đúng sai, phụ thuộc vào biến x nên đây không là một mệnh đề.

c) “Sách giáo khoa Toán 10 Kết nối tri thức rất hay” là một phát biểu không khẳng định được tính đúng sai (tùy thuộc vào ý kiến cá nhân của mỗi người) nên đây không là mệnh đề.

d) “Tết nguyên đán là tết cổ truyền của người Việt Nam” là một phát biểu đúng nên đây là một mệnh đề.

Bài 3. Phát biểu các mệnh đề sau và lập mệnh đề phủ định của nó dưới dạng kí hiệu:

a) P(x): “x,x20”.

b) Q(x): “x,x<0”.

Hướng dẫn giải

a)

+ Phát biểu mệnh đề P(x): “Mọi số nguyên đều có bình phương lớn hơn hoặc bằng 0”.

+ Phủ định của mệnh đề P(x) là Px¯: “x,x2<0”.

b)

+ Phát biểu mệnh đề Q(x): “Có một số nguyên nhỏ hơn 0”.

+ Phủ định của mệnh đề Q(x) là Qx¯: “x,x0”.

B2. Bài tập trắc nghiệm

Câu 1. Cho các câu sau đây:

a) Không được vào đây!

b) Ngày mai bạn đi học không?

c) Chủ tịch Hồ Chí Minh sinh năm 1890.

d) 17 chia 3 dư 1.

e) 2003 không là số nguyên tố.

Có bao nhiêu câu là mệnh đề?

A. 2;

B. 1;

C. 3;

D. 4.

Đáp án: C

Giải thích:

a) Câu a) không phải là mệnh đề vì nó là câu cảm thán và không khẳng định tính đúng sai.

b) Câu b) không phải là mệnh đề vì nó là câu hỏi và không khẳng định tính đúng sai.

c) Câu c) là mệnh đề vì đó là câu khẳng định tính đúng sai.

d) Câu d) là mệnh đề vì đó là câu khẳng định tính đúng sai.

e) Câu e) là mệnh đề vì đó là câu khẳng định tính đúng sai.

Vậy có 3 câu là mệnh đề.

Câu 2. Tìm mệnh đề sai trong các mệnh đề sau:

A. Nếu n là số nguyên chẵn thì n2 là số nguyên chẵn;

B. Điều kiện cần và đủ để một số chia hết cho 5 là số đó phải có chữ số tận cùng là 0 hoặc 5;

C. Tổng 3 góc trong của một tam giác bằng 360°;

D. Tam giác có ba cạnh bằng nhau là tam giác đều.

Đáp án: C

Giải thích:

A. Giải sử n = 2k với k

⇒ n2 = (2k)2 = 4k2 = 2.2k2 chia hết cho 2 nên n2 là số chẵn.

Do đó mệnh đề trên đúng.

B. Mệnh đề trên đúng vì điều kiện cần và đủ để một số chia hết cho 5 là số đó phải có chữ số tận cùng là 0 hoặc 5.

Chẳng hạn số 10 có chữ số tận cùng là 0 hay số 15 có chữ số tận cùng là 5 sẽ chia hết cho 5.

C. Vì tổng 3 góc trong của một tam giác bằng 180° nên mệnh đề trên sai.

D. Mệnh đề trên đúng vì nếu một tam giác có ba cạnh bằng nhau thì đó là tam giác đều.

Câu 3. Phủ định của mệnh đề: “Có ít nhất một số tự nhiên có hai chữ số chia hết cho 11” là mệnh đề nào sau đây:

A. Mọi số tự nhiên có hai chữ số đều chia hết cho 11;

B. Có ít nhất một số tự nhiên có hai chữ số không chia hết cho 11;

C. Mọi số tự nhiên có hai chữ số đều không chia hết cho 11;

D. Có một số tự nhiên có hai chữ số chia hết cho 11.

Đáp án: C

Giải thích:

Ta có:

Phủ định của “có ít nhất” là “mọi”.

Phủ định của “chia hết” là “không chia hết”.

Vậy mệnh đề phủ định của mệnh đề đã cho là: “Mọi số tự nhiên có hai chữ số đều không chia hết cho 11”.

Câu 4. Cho hai mệnh đềP: “x là số chẵn” và Q: “x chia hết cho 2”.

Phát biểu mệnh đề P kéo theo Q.

A. Hoặc x là số chẵn hoặc x chia hết cho 2;

B. Nếu x là số chẵn thì x chia hết cho 2;

C. Nếu x chia hết cho 2 thì x là số chẵn;

D. x là số chẵn và x chia hết cho 2.

Đáp án: B

Giải thích:

Vì mệnh đề kéo theo được phát biểu dưới dạng là “Nếu P thì Q”.

Nên mệnh đề P kéo theo Q là “Nếu x là số chẵn thì x chia hết cho 2”.

Câu 5. Cho mệnh đề: “x2 – 1 chia hết cho 24 khi và chỉ khi x là một số nguyên tố lớn hơn 3”.

Mệnh đề trên không thể viết lại thành mệnh đề nào sau đây?

A. “x2 – 1 chia hết cho 24 tương đương với x là một số nguyên tố lớn hơn 3”;

B. “x2 – 1 chia hết cho 24 là điều kiện cần và đủ để x là một số nguyên tố lớn hơn 3”;

C. “x2 – 1 chia hết cho 24 nếu và chỉ nếu x là một số nguyên tố lớn hơn 3”;

D. “x2 – 1 chia hết cho 24 là điều kiện đủ để x là một số nguyên tố lớn hơn 3”

Đáp án: D

Giải thích:

Xét mệnh đề: “x2 – 1 chia hết cho 24 khi và chỉ khi x là một số nguyên tố lớn hơn 3”.

Đặt:

P: “x2 – 1 chia hết cho 24”.

Q: “x là một số nguyên tố lớn hơn 3”.

Ta viết lại các mệnh đề ở đáp án như sau:

A. P tương đương với Q.

B. P là điều kiện cần và đủ để có Q.

C. P nếu và chỉ nếu Q.

D. P là điều kiện đủ để có Q.

Đối với mệnh đề P Q, ta có thể phát biểu theo một số cách sau:

+ P tương đương Q;

+ P là điều kiện cần và đủ để có Q;

+ P nếu và chỉ nếu Q;

+ P khi và chỉ khi Q.

Ta thấy cách phát biểu ở câu D không nằm trong mấy cách phát biểu ở lý thuyết nên mệnh đề tương đương ở câu D sai.

Câu 6. Cho mệnh đề: “Nếu tứ giác là một hình thoi thì trong tứ giác đó nội tiếp được một đường tròn”.

Mệnh đề đảo của mệnh đề trên là:

A. “Tứ giác là một hình thoi khi và chỉ khi trong tứ giác đó nội tiếp được một đường tròn”;

B. “Trong một tứ giác nội tiếp được một đường tròn khi và chỉ khi tứ giác đó là hình thoi”;

C. “Nếu trong một tứ giác nội tiếp được một đường tròn thì tứ giác đó là hình thoi”;

D. “Tứ giác là một hình thoi kéo theo trong tứ giác đó nội tiếp được một đường tròn”.

Đáp án: C

Giải thích:

Xét mệnh đề “Nếu tứ giác là một hình thoi thì trong tứ giác đó nội tiếp được một đường tròn”, ta có:

P: “Tứ giác là một hình thoi”.

Q: “Trong tứ giác đó nội tiếp được một đường tròn”.

Mệnh đề đảo của mệnh đề P Q là mệnh đề Q P được phát biểu như sau:

“Nếu một tứ giác là hình vuông thì tứ giác đó cũng là hình thoi”.

Đối chiếu với các đáp án, ta thấy mệnh đề ở câu C là phù hợp nhất.

Câu 7. Cho mệnh đề: x , x < 3 x2 < 9.

Mệnh đề trên được phát biểu như thế nào?

A. Tồn tại số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;

B. Với mọi số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;

C. Không có số thực x nào mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;

D. Có duy nhất một số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9.

Đáp án: B

Giải thích:

Ta có mệnh đề x , x < 3 x2 < 9 được phát biểu như sau:

Với mọi số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9.

Đối chiếu với các đáp án, ta thấy phương án B là hợp lý nhất.

 

Câu 8. Câu nào sau đây không phải là mệnh đề chứa biến?

A. x2 + x – 1 > 0;

B. 4 < 5;

C. x là số tự nhiên;

D. x + 6 = 12.

Đáp án: B

Giải thích:

A. Câu trên là mệnh đề chứa biến vì câu trên phụ thuộc vào biến x.

B. Câu B là mệnh đề vì đó là câu khẳng định tính đúng sai.

Nên câu trên không phải là mệnh đề chứa biến.

C. Câu trên là mệnh đề chứa biến vì câu trên phụ thuộc vào biến và ta có tập D của các biến x để câu trên đúng hoặc sai.

D. Câu trên là mệnh đề chứa biến vì câu trên phụ thuộc vào biến và ta có tập D của các biến x để câu trên đúng hoặc sai.

Câu 9. Cho mệnh đề chứa biến P(x): x : x2 + 2 > 12. Mệnh đề nào sau đây đúng?

A. P(2);

B. P(1);

C. P(3);

D. P(4).

Đáp án: D

Giải thích:

Xét bất phương trình (*): x2 + 2 > 12.

A. Thay x = 2 vào phương trình (*) ta có: 22 + 2 = 6 > 12 (vô lý)

Suy ra mệnh đề trên sai.

B. Thay x = 1 vào phương trình (*) ta có: 12 + 2 = 3 > 12 (vô lý).

Suy ra mệnh đề trên sai.

C. Thay x = 3 vào phương trình (*) ta có: 32 + 2 = 11 > 12 (vô lý).

Suy ra mệnh đề trên sai.

D. Thay x = 4 vào phương trình (*) ta có: 42 + 2 = 18 > 12 (đúng).

Suy ra mệnh đề trên đúng.

Câu 10. Mệnh đề phủ định của mệnh đề “Có ít nhất một số thực x thỏa mãn điều kiện bình phương của nó là 1 số không dương” là:

A. x : x2 > 0;

B. x : x2 ≤ 0;

C. x : x2 ≤ 0;

D. x : x2 > 0.

Đáp án: A

Giải thích:

Theo giả thiết, ta có mệnh đề P: "x : x2 ≤ 0".

Ta có:

- Phủ định của phải là .

- Phủ định của quan hệ ≤ là quan hệ >.

Vậy mệnh đề phủ định Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) của mệnh đề P là: x : x2 > 0.

Xem thêm các bài tóm tắt lý thuyết Toán 10 Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 2: Tập hợp và các phép toán trên tập hợp

Tổng hợp lý thuyết Chương 1

Lý thuyết Bài 3. Bất phương trình bậc nhất hai ẩn

Lý thuyết Bài 4. Hệ bất phương trình bậc nhất hai ẩn

Tổng hợp lý thuyết Chương 2

1 9,856 15/08/2023
Tải về


Xem thêm các chương trình khác: