Giải Toán 10 trang 75 Tập 1 Cánh diều

Với giải bài tập Toán lớp 10 trang 75 Tập 1 trong Bài 2: Giải tam giác. Tính diện tích tam giác sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 75 Tập 1.

1 244 16/02/2023


Giải Toán 10 trang 75 Tập 1

Hoạt động 5 trang 75 Toán lớp 10 Tập 1: Cho tam giác ABC có BC = a, CA = b, AB = c và diện tích S (Hình 24).

Giải Toán 10 Bài 2: Giải tam giác - Cánh diều (ảnh 1)

a) Từ định lí côsin, chứng tỏ rằng:

sinA=2bcppapbpc, ở đó p=a+b+c2.

b) Bằng cách sử dụng công thức S=12bcsinA, hãy chứng tỏ rằng:

S=ppapbpc.

Lời giải:

a) Xét tam giác ABC, ta có:

BC2 = AB2 + AC2 - 2.AB.AC.cos A (định lí cosin)

 cos A = AB2+AC2BC22.AB.AC

 cos A = c2+b2a22.c.b

cos2A=b2+c2a224b2c2

Do A^ là góc của tam giác ABC nên 0°<A^<180°.

Do đó sin A > 0.

Lại có cos2 A + sin2 A = 1 nên sin2 A = 1 - cos2 A.

sin2A=1b2+c2a224b2c2

sin2A=4b2c2b2+c2a224b2c2

sin2A=2bc+b2+c2a22bcb2c2+a24b2c2

sin2A=b+c2a2a2bc24b2c2

sin2A=b+c+ab+caa+bcab+c4b2c2

mà p=a+b+c2

sin2A=2p.2pa.2pc.2pb4b2c2

sin2A=4ppapbpcb2c2

Do sin A > 0 nên sinA=4ppapbpcb2c2.

Do đó sinA=2bcppapbpc.

b) Ta có diện tích tam giác ABC: S = 12bc.sin A.

sinA=2bcppapbpc nên S = 12bc. 2bcppapbpc.

Do đó S=ppapbpc.

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Giải Toán 10 trang 72 Tập 1

Giải Toán 10 trang 73 Tập 1

Giải Toán 10 trang 74 Tập 1

Giải Toán 10 trang 75 Tập 1

Giải Toán 10 trang 76 Tập 1

Giải Toán 10 trang 77 Tập 1

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 3: Khái niệm vectơ

Bài 4: Tổng và hiệu của hai vectơ

Bài 5: Tích của một số với một vectơ

Bài 6: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

1 244 16/02/2023


Xem thêm các chương trình khác: