Cho tam giác ABC vuông tại A có AB = 8 cm, AC = 6 cm, có hai đường phân giác AD, BE
Lời giải Bài 21 trang 67 SBT Toán 8 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 8.
Giải SBT Toán 8 Bài 4: Tính chất đường phân giác của tam giác
Bài 21 trang 67 SBT Toán 8 Tập 2: Cho tam giác ABC vuông tại A có AB = 8 cm, AC = 6 cm, có hai đường phân giác AD, BE cắt nhau tại O. Tính:
a) Độ dài các đoạn thẳng AE, EC;
b) Khoảng cách từ O đến đường thẳng AC;
c) Độ dài đường phân giác AD (theo đơn vị centimét và làm tròn kết quả đến hàng phần mười);
d) Diện tích tam giác DOE.
Lời giải:
a) Xét ∆ABC vuông tại A nên theo định lí Pythagore, ta có:
BC2 = AC2 + AB2 = 62 + 82 = 100, suy ra BC = 10 (cm).
Xét ∆ABC có BE là phân giác góc ABC nên (tính chất đường phân giác).
Suy ra
Vậy (cm); (cm).
b) Kẻ OH ⊥ AC tại H. Khi đó khoảng cách từ O đến đường thẳng AC là độ dài đoạn thẳng OH.
Ta có OH ⊥ AC, AB ⊥ AC nên OH // AB.
Xét ∆ABE với OH // AB, ta có: (định lí Thalès) (1).
Xét ∆AEB có AO là phân giác của góc CAB nên (tính chất đường phân giác)
Suy ra hay (2).
Từ (1) và (2) ta có , suy ra (cm).
c) Kẻ DK ⊥ AC, DI ⊥ AB, suy ra
Tứ giác AKDI có nên AKDI là hình chữ nhật
Lại có đường chéo AD là phân giác nên AKDI là hình vuông.
Suy ra AK = DK = DI.
Ta có S∆ABC = S∆ADC + S∆ADB nên
Hay AC.AB = AC.DK + AB.DI = (AB + AC).DK (do DK = DI).
Từ đó, ta có:
Xét ∆AKC vuông tại K có AD2 = AK2 + DK2 (định lí Pythagore)
Suy ra AD2 = AK2 + DK2 = DK2 + DK2 = 2DK2
Do đó (cm).
d) Ta có: (cm2).
Mà
Do đó (cm2).
Tương tự, ta có:
Xét ∆ABC có AD là đường phân giác của góc CAB nên (tính chất đường phân giác)
Suy ra hay
Nên
Suy ra (cm2)
Lại có
Suy ra (cm2).
Xem thêm lời giải SBT Toán lớp 8 bộ sách Cánh diều hay, chi tiết khác:
Bài 23 trang 67 SBT Toán 8 Tập 2: Cho hình bình hành ABCD. Đường phân giác của góc A cắt BD...
Bài 24 trang 68 SBT Toán 8 Tập 2: Cho tam giác ABC có đường phân giác AD và AB = 6 cm, AC = 9 cm....
Xem thêm lời giải SBT Toán lớp 8 bộ sách Cánh diều hay, chi tiết khác:
Bài 6: Trường hợp đồng dạng thứ nhất của tam giác
Bài 7: Trường hợp đồng dạng thứ hai của tam giác
Xem thêm các chương trình khác:
- Soạn văn lớp 8 Cánh diều (hay nhất)
- Văn mẫu lớp 8 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 8 – Cánh diều
- Bố cục tác phẩm Ngữ văn lớp 8 – Cánh diều
- Tác giả tác phẩm Ngữ văn lớp 8 - Cánh diều
- Giải SBT Ngữ văn 8 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 8 – Cánh diều
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 8 – iLearn Smart World
- Giải sbt Tiếng Anh 8 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 8 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 8 ilearn Smart World
- Bài tập Tiếng Anh 8 iLearn Smart World theo Unit có đáp án
- Giải sgk Khoa học tự nhiên 8 – Cánh diều
- Lý thuyết Khoa học tự nhiên 8 – Cánh diều
- Giải sbt Khoa học tự nhiên 8 – Cánh diều
- Giải vbt Khoa học tự nhiên 8 – Cánh diều
- Giải sgk Lịch sử 8 – Cánh diều
- Lý thuyết Lịch sử 8 - Cánh diều
- Giải sbt Lịch sử 8 – Cánh diều
- Giải sgk Địa lí 8 – Cánh diều
- Lý thuyết Địa lí 8 - Cánh diều
- Giải sbt Địa lí 8 – Cánh diều
- Giải sgk Giáo dục công dân 8 – Cánh diều
- Lý thuyết Giáo dục công dân 8 – Cánh diều
- Giải sbt Giáo dục công dân 8 – Cánh diều
- Giải sgk Công nghệ 8 – Cánh diều
- Lý thuyết Công nghệ 8 - Cánh diều
- Giải sbt Công nghệ 8 – Cánh diều
- Giải sgk Tin học 8 – Cánh diều
- Lý thuyết Tin học 8 - Cánh diều
- Giải sbt Tin học 8 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 – Cánh diều