Cho hình lăng trụ MNPQ.M’N’P’Q’ có tất cả các cạnh bằng nhau. Chứng minh rằng M’N vuông góc P'Q

Lời giải Bài 4 trang 89 SBT Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 242 lượt xem


Giải SBT Toán 11 Bài 1: Hai đường thẳng vuông góc

Bài 4 trang 89 SBT Toán 11 Tập 2: Cho hình lăng trụ MNPQ.M’N’P’Q’ có tất cả các cạnh bằng nhau. Chứng minh rằng M’N ⊥ P’Q.

Lời giải:

Cho hình lăng trụ MNPQ.M’N’P’Q’ có tất cả các cạnh bằng nhau

Do MNPQ.M’N’P’Q’ là hình lăng trụ có tất cả các cạnh bằng nhau nên PQ = QQ’ = P’Q’ = PP’. Suy ra PQQ’P’ là hình thoi nên có: P’Q ⊥ PQ’. (1)

Tương tự: ta cũng có M’Q’QM và MQPN là hai hình thoi.

Suy ra:

⦁ NP // MQ mà MQ // M’Q’ nên NP // M’Q’.

⦁ NP = MQ mà MQ = M’Q’ nên NP = M’Q’.

Từ đó, ta có: NPQ’M’ là hình bình hành, suy ra M’N // PQ’. (2)

Từ (1), (2) ta có: M’N ⊥ P’Q.

1 242 lượt xem


Xem thêm các chương trình khác: