Người ta muốn chế tạo một chiếc hộp hình hộp chữ nhật có thể tích 500 cm^3 với yêu cầu dùng ít vật liệu nhất

Lời giải Thực hành 5 trang 35 Toán 12 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.

1 7,109 10/06/2024


Giải Toán 12 Chân trời sáng tạo Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản

Thực hành 5 trang 35 Toán 12 Tập 1: Người ta muốn chế tạo một chiếc hộp hình hộp chữ nhật có thể tích 500 cm3 với yêu cầu dùng ít vật liệu nhất.

Chiều cao hộp phải là 2 cm, các kích thước khác là x, y với x > 0 và y > 0.

Thực hành 5 trang 35 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

a) Hãy biểu thị y theo x.

b) Chứng tỏ rằng diện tích toàn phần của chiếc hộp là:

Sx=500+4x+1000x.

c) Lập bảng biến thiên của hàm số S(x) trên khoảng (0; + ∞).

d) Kích thước của hộp là bao nhiêu thì dùng ít vật liệu nhất? (Làm tròn kết quả đến hàng phần mười.)

Lời giải:

a) Thể tích của hình hộp chữ nhật cần chế tạo là: V = 2xy (cm3).

Theo bài ra ta có V = 500 cm3, khi đó 2xy = 500, suy ra y = 250x.

b) Diện tích xung quanh của chiếc hộp là

Sxq = 2(x + y) ∙ 2 = 4(x + y) (cm2).

Diện tích toàn phần của chiếc hộp là

Stp = Sxq + 2Sđ = 4(x + y) + 2xy (cm2)

Lại có y = 250x nên Stp = 4x+250x+2x250x=4x+1000x+500.

Vậy diện tích toàn phần của chiếc hộp là Sx=500+4x+1000x.

c) Xét hàm số Sx=500+4x+1000x với x ∈ (0; + ∞).

Ta có S'(x) = 4 – 1000x2;

Trên khoảng (0; + ∞), S'(x) = 0 khi x = 510.

Ta có limx0+Sx=limx0+500+4x+1000x=+;

limx+Sx=limx+500+4x+1000x=+

Bảng biến thiên:

Thực hành 5 trang 35 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

d) Để dùng ít vật liệu nhất thì diện tích toàn phần của chiếc hộp phải nhỏ nhất.

Căn cứ vào bảng biến thiên ở câu c), ta thấy hàm số S(x) đạt giá trị nhỏ nhất bằng 500+200105 tại x = 510.

Với x = 510, ta có y = 250510=510.

Vậy kích thước 3 cạnh của chiếc hộp là 2 cm, 510cm, 510cm thì dùng ít vật liệu nhất.

1 7,109 10/06/2024


Xem thêm các chương trình khác: