Giải Toán 11 trang 122 Kết nối tri thức

Với giải bài tập Toán 11 trang 122 trong Bài 17: Hàm số liên tục sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 122.

1 191 04/06/2023


Giải Toán 11 trang 122

Bài 5.14 trang 122 Toán 11 Tập 1: Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 2 và Bài 5.14 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11. Tính g(1).

Lời giải:

Vì hàm số f(x) liên tục tại x = 1 nên hàm số 2f(x) cũng liên tục tại x = 1.

Mà hàm số g(x) liên tục tại x = 1. Do đó, hàm số y = 2f(x) – g(x) liên tục tại x = 1.

Suy ra Bài 5.14 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Vì Bài 5.14 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 và f(1) = 2 nên ta có 3 = 2 . 2 – g(1) ⇔ g(1) = 1.

Vậy g(1) = 1.

Bài 5.15 trang 122 Toán 11 Tập 1: Xét tính liên tục của các hàm số sau trên tập xác định của chúng:

a) fx=xx2+5x+6;

b) Bài 5.15 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Lời giải:

a) fx=xx2+5x+6

Biểu thức xx2+5x+6 có nghĩa khi x2 + 5x + 6 ≠ 0 ⇔ (x + 2)(x + 3) ≠ 0 Bài 5.15 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Do đó, tập xác định của hàm số f(x) là ℝ \ {– 3; – 2} = (–∞; – 3) ∪ (– 3; – 2) ∪ (– 2; +∞).

Vì f(x) là hàm phân thức hữu tỉ nên nó liên tục trên tập xác định.

Vậy hàm số f(x) liên tục trên các khoảng (–∞; – 3), (– 3; – 2) và (– 2; +∞).

b) Bài 5.15 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Tập xác định của hàm số là ℝ.

+) Nếu x < 1, thì f(x) = 1 + x2.

Đây là hàm đa thức nên có tập xác định là ℝ.

Vậy nó liên tục trên (–∞; 1).

+) Nếu x > 1, thì f(x) = 4 – x.

Đây là hàm đa thức nên có tập xác định là ℝ.

Vậy nó liên tục trên (1; +∞).

+) Ta có: limx1+fx=limx1+4x=41=3;

limx1fx=limx11+x2=1+12=2.

Suy ra limx1+fxlimx1fx, do đó không tồn tại giới hạn của f(x) tại x = 1.

Khi đó, hàm số f(x) không liên tục tại x = 1.

Vậy hàm số đã cho liên tục trên các khoảng (–∞; 1), (1; +∞) và gián đoạn tại x = 1.

Bài 5.16 trang 122 Toán 11 Tập 1 :Tìm giá trị của tham số m để hàm sốliên tục trên ℝ.

Bài 5.16 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Lời giải:

Tập xác định của hàm số là ℝ.

+) Nếu x > 0, thì f(x) = sin x. Do đó nó liên tục trên (0; +∞).

+) Nếu x < 0, thì f(x) = – x + m, đây là hàm đa thức nên nó liên tục trên (–∞; 0).

Khi đó, hàm số f(x) liên tục trên các khoảng (–∞; 0) và (0; +∞).

Do đó, để hàm số f(x) liên tục trên ℝ thì f(x) phải liên tục tại x = 0. Điều này xảy ra khi và chỉ khi limx0fx=f0limx0+fx=limx0fx=f0 (1).

Lại có: limx0+fx=limx0+sinx=0; f(0) = sin 0 = 0; limx0fx=limx0x+m=m .

Khi đó, (1) ⇔ m = 0.

Vậy m = 0 thì thỏa mãn yêu cầu bài toán.

Bài 5.17 trang 122 Toán 11 Tập 1: Một bảng giá cước taxi được cho như sau:

a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.

b) Xét tính liên tục của hàm số ở câu a.

Lời giải:

a) Gọi x (km, x > 0) là quãng đường khách di chuyển và y (đồng) là số tiền khách phải trả theo quãng đường di chuyển x.

Với x ≤ 0,5, ta có y = 10 000.

Với 0,5 < x ≤ 30, ta có: y = 10 000 + 13 500(x – 0,5) hay y = 13 500x + 3 250.

Với x > 30, ta có: y = 10 000 + 13 500 . 29,5 + 11 000(x – 30) hay y = 11 000x + 78 250.

Vậy công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển là

Bài 5.17 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

b) +) Với 0 < x < 0,5 thì y = 10 000 là hàm hằng nên nó liên tục trên (0; 0,5).

+) Với 0,5 < x < 30 thì y = 13500x + 3 250 là hàm đa thức nên nó liên tục trên (0,5; 30).

+) Với x > 30 thì y = 11 000x + 78 250 là hàm đa thức nên nó liên tục trên (30; +∞).

+) Ta xét tính liên tục của hàm số tại x = 0,5 và x = 30.

- Tại x = 0,5, ta có y(0,5) = 10 000;

limx0,5y=limx0,510000=10000;

limx0,5+y=limx0,5+13500x+3250= 13 500 . 0,5 + 3 250 = 10 000.

Do đó, limx0,5y=limx0,5+y=limx0,5y=y0,5 nên hàm số liên tục tại x = 0,5.

- Tại x = 30, ta có: y(30) = 13 500 . 30 + 3 250 = 408 250;

limx30y=limx3013500x+3250 = 13 500 . 30 + 3 250 = 408 250;

limx30+y=limx30+11000x+78250 = 11 000 . 30 + 78 250 = 408 250.

Do đó, limx30y=limx30+y=limx30y=y30 nên hàm số liên tục tại x = 30.

Vậy hàm số ở câu a liên tục trên (0; +∞).

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác: 

Giải Toán 11 trang 119

Giải Toán 11 trang 120

Giải Toán 11 trang 121

Giải Toán 11 trang 122

1 191 04/06/2023


Xem thêm các chương trình khác: