Bài 5.17 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Lời giải Bài 5.17 trang 122 Toán 11 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 686 04/06/2023


Giải Toán 11 Bài 17: Hàm số liên tục

Bài 5.17 trang 122 Toán 11 Tập 1: Một bảng giá cước taxi được cho như sau:

Giá mở cửa

(0,5 km đầu)

Giá cước các km tiếp theo đến 30 km

Giá cước từ km thứ 31

10 000 đồng

13 500 đồng

11 000 đồng

a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.

b) Xét tính liên tục của hàm số ở câu a.

Lời giải:

a) Gọi x (km, x > 0) là quãng đường khách di chuyển và y (đồng) là số tiền khách phải trả theo quãng đường di chuyển x.

Với x ≤ 0,5, ta có y = 10 000.

Với 0,5 < x ≤ 30, ta có: y = 10 000 + 13 500(x – 0,5) hay y = 13 500x + 3 250.

Với x > 30, ta có: y = 10 000 + 13 500 . 29,5 + 11 000(x – 30) hay y = 11 000x + 78 250.

Vậy công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển là

Bài 5.17 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

b) +) Với 0 < x < 0,5 thì y = 10 000 là hàm hằng nên nó liên tục trên (0; 0,5).

+) Với 0,5 < x < 30 thì y = 13500x + 3 250 là hàm đa thức nên nó liên tục trên (0,5; 30).

+) Với x > 30 thì y = 11 000x + 78 250 là hàm đa thức nên nó liên tục trên (30; +∞).

+) Ta xét tính liên tục của hàm số tại x = 0,5 và x = 30.

- Tại x = 0,5, ta có y(0,5) = 10 000;

limx0,5y=limx0,510000=10000;

limx0,5+y=limx0,5+13500x+3250= 13 500 . 0,5 + 3 250 = 10 000.

Do đó, limx0,5y=limx0,5+y=limx0,5y=y0,5 nên hàm số liên tục tại x = 0,5.

- Tại x = 30, ta có: y(30) = 13 500 . 30 + 3 250 = 408 250;

limx30y=limx3013500x+3250 = 13 500 . 30 + 3 250 = 408 250;

limx30+y=limx30+11000x+78250 = 11 000 . 30 + 78 250 = 408 250.

Do đó, limx30y=limx30+y=limx30y=y30 nên hàm số liên tục tại x = 30.

Vậy hàm số ở câu a liên tục trên (0; +∞).

1 686 04/06/2023


Xem thêm các chương trình khác: