Giải Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
Với giải bài tập Toán lớp 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài 4.
Giải bài tập Toán 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn
Bài giảng Toán 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn
Mở đầu
Lời giải
Học xong bài này ta sẽ giải quyết bài toán như sau:
Gọi x, y (máy) lần lượt là số máy điều hòa hai chiều và số máy điều hòa một chiều mà chủ cửa hàng đầu tư
Vì tổng số điều hòa hai chiều và một chiều không vượt quá 100 máy nên ta có bất phương trình: x + y ≤ 100
Đầu tư một máy điều hòa hai chiều là 20 triệu đồng và đầu tư một máy điều hòa một chiều là 10 triệu đồng nên số tiền đầu tư là: 20x + 10y (triệu đồng)
Vì số vốn ban đầu không vượt quá 1,2 tỉ đồng nên ta có bất phương trình:
20x + 10y ≤ 1 200
Lợi nhuận dự kiến chủ cửa hàng thu được là: F(x;y) = 3,5x + 2y (triệu đồng)
Bài toán trở thành tìm giá trị x, y thỏa mãn hệ bất phương trình: (1) để F(x;y) = 3,5x + 2y là lớn nhất.
Biểu diễn miền nghiệm của hệ bất phương trình (1) trên mặt phẳng tọa độ bằng cách biểu diễn từng miền nghiệm của từng bất phương trình trong hệ bất phương trình (1), rồi lấy giao của các miền nghiệm ta được miền nghiệm của hệ BPT (1) là tứ giác OMNP với tọa độ các điểm O(0;0), M(0;100), N(20;80), P(60;0).
Tại O(0;0) giá trị biểu thức F(x;y) = 3,5x + 2y là: 3,5.0 + 2.0 = 0;
Tại M(0;100) giá trị biểu thức 3,5x + 2y là: 3,5.0 + 2.100 = 200;
Tại N(20;80) giá trị biểu thức 3,5x + 2y là: 3,5.20 + 2.80 = 230;
Tại P(60;0) giá trị biểu thức 3,5x + 2y là: 3,5.60 + 2.0 = 210;
Suy ra tại x = 20, y = 80 thì giá trị biểu thức 3,5x + 2y là lớn nhất.
Vậy nếu là chủ cửa hàng thì em cần đầu tư kinh doanh 20 cái điều hòa hai chiều, 80 cái điều hòa một chiều để lợi nhuận thu được là lớn nhất.
1. Hệ bất phương trình bậc nhất hai ẩn
a) Do nhu cầu của thị trường không quá 100 máy nên x và y cần thỏa mãn điều kiện gì?
c) Tính số tiền lãi mà chủ cửa hàng dự kiến thu được theo x và y.
Lời giải
Gọi số máy điều hòa hai chiều cần nhập là x; số máy điều hòa một chiều cần nhập là y . Khi đó, số tiền để mua x điều hòa hai chiều là 20x và số tiền để mua y điều hòa một chiều là 10y .
Số tiền vốn cửa hàng phải bỏ ra là 20x + 10y (triệu đồng)
a) Do nhu cầu không quá 100 máy nên x + y ≤100.
b) Vì số vốn mà cửa hàng có thể đầu tư không vượt quá 1,2 tỉ đồng nên x và y phải thỏa mãn bất phương trình 20x + 10y ≤ 1200 (triệu đồng).
c) Vì mỗi điều hòa hai chiều dự kiến lãi 3,5 triệu đồng/ máy và mỗi điều hòa một chiều dự kiến lãi 2 triệu đồng/máy nên số tiền lãi mà chủ cửa hàng dự kiến thu được theo x và y là: 3,5x + 2y (triệu đồng).
Lời giải
Từ hoạt động 1 ta có hệ bất phương trình hai ẩn x; y như sau:
Ta có:
x = 30; y = 40 ta có: 30 ; 40
Ta có: 30 + 40 = 70 ≤ 100
20.30 + 10.40 = 1 000 < 1 200
Vậy một nghiệm của hệ bất phương trình là (30; 40).
2. Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng tọa độ
b) Miền tam giác OAB (H.2.5) có phải là giao của các miền nghiệm D1, D2, D3 hay không?
Lời giải
a)
+) Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0), tính cả Oy.
+) Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0;1), tính cả Ox.
+) Xác định miền nghiệm D3 của bất phương trình x + y ≤ 150.
- Vẽ đường thẳng d: x + y – 150 = 0.
- Vì 0 + 0 = 0 < 150 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + y ≤ 150
Do đó miền nghiệm D3 của bất phương trình x + y ≤ 150 là nửa mặt phẳng bờ d chứa gốc tọa độ, kể cả đường thẳng d.
b) Giao điểm của ba miền nghiệm D1, D2, D3 là miền tam giác OAB với O(0;0), A(150;0) và B(0;150)
Do đó miền tam giác OAB (H.2.5) có là giao của các miền nghiệm D1, D2, D3.
c) Điểm (1; 2) nằm trong tam giác OAB thỏa mãn x = 1 > 0, y = 2 > 0 và 1 + 2 = 3 < 150 nên cặp số (x; y) = (1;2) thỏa mãn cả ba bất phương trình của hệ bất phương trình đã cho. Do đó nó là một nghiệm của hệ bất phương trình đã cho.
Điểm (1;149) nằm trong tam giác OAB thỏa mãn x = 1 > 0, y = 149 > 0 và 1 + 149 = 150 ≤ 150 nên cặp số (x; y) = (1;149) thỏa mãn cả ba bất phương trình của hệ bất phương trình đã cho. Do đó nó là một nghiệm của hệ bất phương trình đã cho.
Lời giải
+) Xác định miền nghiệm D1 của bất phương trình x0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0), kể cả đường thẳng Oy.
+) Xác định miền nghiệm D2 của bất phương trình y > 0 là nửa mặt phẳng bờ Ox chứa điểm (0; 1), không kể đường thẳng Ox.
+) Xác định miền nghiệm D3 của bất phương trình x + y ≤ 100.
Ta vẽ đường thẳng x + y = 100 (d1). Lấy điểm O(0; 0) thay tọa độ điểm này vào x + y ta được: 0 + 0 < 100. Vậy miền nghiệm D3 là nửa mặt phẳng bờ d1 chứa điểm O kể cả bờ là đường thẳng d1.
+) Xác định miền nghiệm D4 của bất phương trình 2x + y < 120
Ta vẽ đường thẳng 2x + y = 120 (d'). Lấy điểm O(0; 0) thay tọa độ điểm này vào 2x + y ta được: 2.0 + 0 < 120. Vậy miền nghiệm D4 của bất phương trình là nửa mặt phẳng bờ d' chứa điểm O không kể bờ là đường thẳng d'.
3.Ứng dụng của hệ bất phương trình bậc nhất hai ẩn
a) Tính giá trị của biểu thức F(x; y) tại mỗi đỉnh O, A và B.
Lời giải
a) O(0; 0); B(0; 150); A(150; 0).
Ta có: F(x; y) = 2x + 3y.
Khi đó ta tính được:
F(0; 0) = 2.0 + 3.0 = 0.
F(150; 0) = 2.150 + 3.0 = 300
F(0; 150) = 2.0 + 3.150 = 150
b) Trong miền tam giác OAB, lấy một điểm M(x; y) bất kì thì ta luôn có x 0; y0 nên F(x; y) nhỏ nhất khi x = 0 và y = 0.
F(x; y) min = 2.0 + 3.0 = 0.
Vậy giá trị nhỏ nhất của F(x; y) trên miền tam giác OAB là 0.
c) Vì điểm M(x; y) nằm trong miền tam giác OAB, nên tọa độ điểm M là nghiệm của bất phương trình x + y ≤ 150.
Hơn nữa, x ≥ 0, y ≥ 0 nên x + y ≥ 0.
Do đó ta có, 0 ≤ x + y ≤ 150 ⇔ 0 ≤ 2x + 2y ≤ 300
⇔ 0 + y ≤ 2x + 2y + y ≤ 300 + y
⇔ y ≤ 2x + 3y ≤ 300 + y (1)
Mà 0 ≤ y ≤ 150 nên 300 + y ≤ 300 + 150 = 450.
Từ (1) suy ra: 0 ≤ 2x + 3y ≤ 450 hay F(x; y) ≤ 450.
Dấu “=” xảy ra khi x + y = 150 và y = 150 hay x = 0 và y = 150.
Vậy F(x; y) đạt giá trị lớn nhất là 450 tại điểm B(0; 150).
Lời giải
a) Số máy tính loại A cửa hàng cần nhập trong một tháng là x (máy), số máy tính loại B cửa hàng cần nhập trong một tháng là y (máy) .
Do tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy: x + y ≤ 250
Vì mỗi chiếc máy tính loại A có giá 10 triệu và mỗi máy tính loại B có giá 20 triệu nên tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)
Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có: 10x + 20y ≤ 4 000 hay x + 2y ≤ 400.
Ta có hệ bất phương trình:
Ta xác định miền nghiệm của hệ bất phương trình trên:
+) Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0).
+) Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0;1).
+) Xác định miền nghiệm D3 của bất phương trình x + y ≤ 250.
- Vẽ đường thẳng d: x + y = 250.
- Vì 0 + 0 = 0 < 250 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + y ≤ 250
Do đó miền nghiệm D3 của bất phương trình x + y ≤ 250 là nửa mặt phẳng bờ d chứa gốc tọa độ.
+) Xác định miền nghiệm D4 của bất phương trình x + 2y ≤ 400.
- Vẽ đường thẳng d’: x + 2y = 400.
- Vì 0 + 2 . 0 = 0 < 400 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + 2y < 400
Do đó miền nghiệm D4 của bất phương trình x + 2y < 400 là nửa mặt phẳng bờ d’ chứa gốc tọa độ.
Miền nghiệm của hệ bất phương trình trên là tứ giác OABC với tọa độ các đỉnh là O(0;0), A(0; 200), B(100; 150), C(250; 0)
b) Lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B là: F(x;y) = 2,5x + 4y (triệu đồng).
Vậy F(x; y) = 2,5x + 4y.
c) Bài toán chuyển về tìm giá trị lớn nhất của F(x;y) với (x;y) thuộc miền nghiệm của hệ bất phương trình .
Người ta đã chứng minh được, giá trị F(x; y) lớn nhất tại (x; y) là tọa độ của một trong bốn đỉnh O; A; B; C.
Tại O(0; 0), ta có: F(0; 0) = 2,5 . 0 + 4 . 0 = 0;
Tại A(0; 200), ta có: F(0; 200) = 2,5 . 0 + 4 . 200 = 800;
Tại B(100; 150), ta có: F(100; 150) = 2,5 . 100 + 4 . 150 = 850;
Tại B(250; 0), ta có: F(250; 0) = 2,5 . 250 + 4 . 0 = 625.
Do đó F(x; y) lớn nhất bằng 850 tại x = 100 và y = 150.
Vậy cửa hàng cần nhập 100 máy loại A, 150 máy loại B để cửa hàng thu được lợi nhuận lớn nhất là 850 triệu đồng.
Bài tập
Lời giải
a) là hệ bất phương trình bậc nhất hai ẩn.
Vì hệ gồm 2 bất phương trình x < 0 và y ≥ 0, đây đều là các bất phương trình bậc nhất hai ẩn (do x < 0 ⇔ 1x + 0y < 0 và y ≥ 0 ⇔ 0x + 1y ≥ 0).
b) không phải là hệ bất phương trình bậc nhất hai ẩn vì x + y2 < 0 không phải bất phương trình bậc nhất hai ẩn.
c) không phải là hệ bất phương trình bậc nhất hai ẩn vì có bất phương trình x + y + z < 0 không phải bất phương trình bậc nhất hai ẩn.
d) là hệ bất phương trình bậc nhất hai ẩn.
Lời giải
a)
+) Xác định miền nghiệm D1 của bất phương trình y – x < – 1.
- Vẽ đường thẳng d: y – x = – 1.
- Vì 0 – 0 = 0 > – 1 nên tọa độ điểm (0; 0) không thỏa mãn bất phương trình y – x < – 1
Do đó miền nghiệm D1 của bất phương trình y – x < – 1 là nửa mặt phẳng bờ d không chứa điểm O(0; 0) và không kể đường thẳng d.
+) Miền nghiệm D2 của bất phương trình x > 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) và không kể đường thẳng Oy.
+) Miền nghiệm D3 của bất phương trình y < 0 là nửa mặt phẳng bờ Ox chứ điểm (0; – 1) và không kể đường thẳng Ox.
Vậy miền không bị gạch là miền nghiệm của hệ bất phương trình đã cho.
b)
Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) và kể cả đường thẳng Oy.
Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0; 1) và kể cả đường thẳng Ox.
+) Xác định miền nghiệm D3 của bất phương trình 2x + y ≤ 4.
– Vẽ đường thẳng d: 2x + y = 4
- Vì 2.0 + 0 = 0 < 4 nên tọa độ điểm (0; 0) thỏa mãn bất phương trình 2x + y ≤ 4
Do đó miền nghiệm D3 của bất phương trình 2x + y ≤ 4 là nửa mặt phẳng bờ d chứa điểm O(0; 0) và kể cả đường thẳng d.
Vậy miền nghiệm của hệ bất phương trình đã cho là miền tam giác OAB (miền không bị gạch).
c)
Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) và kể cả đường thẳng Oy.
+) Xác định miền nghiệm D2 của bất phương trình x + y > 5.
– Vẽ đường thẳng d: x + y = 5
- Vì 0 + 0 = 0 < 5 nên tọa độ điểm (0; 0) không thỏa mãn bất phương trình x + y > 5
Do đó miền nghiệm D2 của bất phương trình x + y > 5 là nửa mặt phẳng bờ d không chứa điểm O(0; 0) và không kể đường thẳng d.
+) Xác định miền nghiệm D3 của bất phương trình x – y < 0.
– Vẽ đường thẳng d’: x – y = 0
- Vì 1 - 0 = 1 > 0 nên tọa độ điểm (1; 0) không thỏa mãn bất phương trình x – y < 0
Do đó miền nghiệm D3 của bất phương trình x – y < 0 là nửa mặt phẳng bờ d’ không chứa điểm (1; 0) và không kể đường thẳng d’.
Vậy miền nghiệm của hệ là miền không bị gạch.
c) Tìm số kilôgam thịt mỗi loại mà gia đình cần mua để chi phí là ít nhất.
Lời giải
Số kilôgam thịt bò gia đình mua là x (kg); số kilôgam thịt lợn gia đình mua là y (kg). Vì số kilôgam thịt bò mua nhiều nhất là 1,6 kg và số kilôgam thịt lợn mua nhiều nhất là 1,1 kg nên ta có:
(1)
Vì mỗi kilôgam thịt bò có chứa 800 đơn vị protein và mỗi kilôgam thịt lợn có chứa 600 đơn vị protein nên khối lượng protein có trong x kg thịt bò và y kg thịt lợn là: 800x + 600y (đơn vị).
Mà mỗi ngày gia đình cần ít nhất 900 đơn vị protein nên ta có bất phương trình:
800x + 600y ≥ 900 (2)
Vì mỗi kilôgam thịt bò có chứa 200 đơn vị lipid và mỗi kilôgam thịt lợn có chứa 400 đơn vị lipid nên khối lượng lipid có trong x kg thịt bò và y kg thịt lợn là: 200x + 400y (đơn vị).
Mà mỗi ngày gia đình cần ít nhất 400 đơn vị lipid nên ta có bất phương trình:
200x + 400y ≥ 400 (3)
Từ (1); (2); (3) ta có hệ bất phương trình:
Ta đi xác định miền nghiệm của hệ bất phương trình.
Miền nghiệm của hệ bất phương trình là tứ giác ABCD có trong hình vẽ trên với tọa độ các đỉnh là A(0,3; 1,1), B(0,6; 0,7), C(1,6; 0,2), D(1,6; 1,1).
b) Số tiền mua một kilôgam thịt bò là 250 nghìn đồng và số tiền mua một kilôgam thịt lợn là 160 nghìn đồng nên số tiền để mua x kg thịt bò và y kg thịt lợn là: F(x; y) = 250x + 160y (nghìn đồng).
c) Người ta đã chứng minh được để số tiền mua ít nhất thì (x; y) là tọa độ của một trong bốn đỉnh tứ giác ABCD.
Ta có: F(x; y) = 250x + 160y. Khi đó:
F(0,3; 1,1) = 250 . 0,3 + 160 . 1,1 = 251;
F(0,6; 0,7) = 250 . 0,6 + 160 . 0,7 = 262;
F(1,6; 0,2) = 250 . 1,6 + 160 . 0,2 = 432;
F(1,6; 1,1) = 250 . 1,6 + 160 . 1,1 = 576;
Suy ra giá trị nhỏ nhất cần tìm là F(0,3; 1,1) = 251.
Vậy để chi phí là ít nhất thì gia đình cần mua 0,3 kilôgam thịt bò và 1,1 kilôgam thịt lợn.
Lý thuyết Hệ bất phương trình bậc nhất hai ẩn
1. Hệ bất phương trình bậc nhất hai ẩn
- Hệ bất phương trình bậc nhất hai ẩn là một hệ gồm hai hay nhiều bất phương trình bậc nhất hai ẩn.
- Cặp số là nghiệm của một hệ bất phương trình bậc nhất hai ẩn khi đồng thời là nghiệm của tất cả các bất phương trình trong hệ đó.
Ví dụ:
là một hệ bất phương trình hai ẩn gồm 2 bất phương trình và .
không phải là hệ bất phương trình bậc nhất hai ẩn bởi là bất phương trình bậc hai 2 ẩn.
- Cho hệ bất phương trình hai ẩn .
Cặp (x; y) = (10; 2) là nghiệm của bất phương trình x + y > 9 và cũng là nghiệm của bất phương trình x – y < 9. Nên cặp (x; y) = (10; 2) là nghiệm của hệ bất phương trình trên.
2. Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng tọa độ
- Trong mặt phẳng tọa độ, tập hợp các điểm có tọa độ là nghiệm của hệ bất phương trình bậc nhất hai ẩn là miền nghiệm của hệ bất phương trình đó.
- Miền nghiệm của hệ là giao các miền nghiệm của các bất phương trình trong hệ.
- Cách xác định miền nghiệm của một hệ bất phương trình bậc nhất hai ẩn:
+ Trên cùng một mặt phẳng tọa độ, xác định miền nghiệm của mỗi bất phương trình bậc nhất hai ẩn trong hệ và gạch bỏ miền còn lại.
+ Miền không bị gạch là miền nghiệm của hệ bất phương trình đã cho.
Ví dụ: Xác định miền nghiệm của hệ bất phương trình bậc nhất hai ẩn::
Bước 1: Xác định miền nghiệm D1 của bất phương trình x ≥ 0 và gạch bỏ phần miền còn lại.
- Đường thẳng x = 0 là trục tọa độ Oy.
- Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy nằm bên phải trục Oy.
Bước 2: Tương tự, miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox nằm bên trên trục Ox.
Bước 3: Miền nghiệm D3 của bất phương trình x + y ≤ 150:
- Vẽ đường thẳng d: x + y = 150.
- Vì 0 + 0 ≤ 150 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x + y ≤ 150.
Do đó, miền nghiệm D3 của bất phương trình x + y ≤ 150 là nửa mặt phẳng bờ d chứa gốc tọa độ O.
Từ đó ta có miền nghiệm tô màu xanh chính là giao miền nghiệm của các bất phương trình trong hệ.
3. Ứng dụng của hệ bất phương trình bậc nhất hai ẩn
Nhận xét: Tổng quát, người ta chứng minh được rằng giá trị lớn nhất (hay nhỏ nhất) của biểu thức , với là tọa độ các điểm thuộc miền đa giác , tức là các điểm nằm bên trong hay nằm trên các cạnh của đa giác, đạt được tại một trong các đỉnh của đa giác đó.
Ví dụ: Cho hệ bất phương trình bậc nhất hai ẩn: và . Tìm giá trị lớn nhất của .
Hướng dẫn giải:
Bước 1: Xác định miền nghiệm của hệ bất phương trình trên.
- Xác định miền nghiệm D1 của bất phương trình x ≥ 0.
- Đường thẳng x = 0 là trục tọa độ Oy.
- Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy nằm bên phải trục Oy.
- Tương tự, miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox nằm bên trên trục Ox.
- Miền nghiệm D3 của bất phương trình x + y ≤ 100:
+ Vẽ đường thẳng d1: x + y = 100.
+ Vì 0 + 0 ≤ 100 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x + y ≤ 100.
Do đó, miền nghiệm D3 của bất phương trình x + y ≤ 100 là nửa mặt phẳng bờ d1 chứa gốc tọa độ O.
- Miền nghiệm D4 của bất phương trình 2x + y ≤ 120:
+ Vẽ đường thẳng d2: 2x + y = 120.
+ Vì 2. 0 + 0 ≤ 120 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình 2x + y ≤ 120.
Do đó, miền nghiệm D4 của bất phương trình 2x + y ≤ 120 là nửa mặt phẳng bờ d2 chứa gốc tọa độ O.
Từ đó ta có miền nghiệm tô màu xanh chính là giao miền nghiệm của các bất phương trình trong hệ.
Miền nghiệm là miền tứ giác OABC với O(0;0), A(0;100), B(20;80) và C(60;0).
Bước 2: Tính giá trị của biểu thức F tại các đỉnh của tứ giác
F(O) = 0; F(A) = 200; F(B) = 230; F(C) = 210.
Bước 3: So sánh các giá trị thu được ở Bước 2, kết luận giá trị lớn nhất của là 230.
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 5: Giá trị lượng giác của một góc từ 0 độ đến 180 độ
Bài 6: Hệ thức lượng trong tam giác
Xem thêm tài liệu Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức