Giải Toán 10 Bài 14 (Kết nối tri thức): Các số đặc trưng. Đo độ phân tán
Với giải bài tập Toán lớp 10 Bài 14: Các số đặc trưng. Đo độ phân tán sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài 14.
Giải bài tập Toán 10 Bài 14: Các số đặc trưng. Đo độ phân tán
Mở đầu
Mở đầu trang 84 Toán 10 Tập 1: Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình:
Lời giải
Bài học này sẽ giới thiệu một vài số đặc trưng như: khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn và phương sai.
Ở đây ta sẽ sử dụng độ lệch chuẩn để so sánh
Điểm trung bình môn học kì I của An là:
Điểm trung bình môn học kì I của Bình là
Vì s2 < s1 nên độ phân tán của số liệu 2 nhỏ hơn độ phân tán của số liệu 1 hay bạn Bình học đều hơn bạn An.
1. Khoảng biến thiên và khoảng tứ phân vị
Leicester City: 41 81 44 47 52.
Lời giải:
Ta có câu lạc bộ Leicester City có điểm lớn nhất là 81 và nhỏ nhất là 41 nên khoảng cách giữa điểm cao nhất và thấp nhất là 40.
Câu lạc bộ Everton có điểm lớn nhất là 61 và nhỏ nhất là 41 nên khoảng cách giữa điểm cao nhất và thấp nhất là 20.
Ta thấy 20 < 40 nên câu lạc bộ Everton thi đấu ổn định hơn.
163 159 172 167 165 168 170 161.
Tính khoảng biến thiên của mẫu số liệu này.
Lời giải:
Trong mẫu số liệu trên, chiều cao cao nhất là 172 cm và thấp nhất là 159 cm.
Do đó, khoảng biến thiên là R = 172 – 159 = 13 (cm).
Vậy khoảng biến thiên R = 13cm.
Điện Biên: 16 24 26 26 26 27 28.
a) Tính khoảng biến thiên của mỗi mẫu số liệu và so sánh.
Lời giải:
a)
∙ Hà Nội: Nhiệt độ cao nhất là 35, nhiệt độ thấp nhất là 23.
Khi đó, khoảng biến thiên là: R1 = 35 – 23 = 12.
∙ Điện Biên: Nhiệt độ cao nhất là 28, nhiệt độ thấp nhất là 16.
Khi đó, khoảng biến thiên là: R2 = 28 – 16 = 12.
Ta thấy R1 = R2 = 12.
Vậy khoảng biến thiên về nhiệt độ của Hà Nội và Điện Biên bằng nhau.
b) Về trực quan nhiệt độ tại Điện Biên thay đổi khá ít, riêng một ngày có nhiệt độ thấp hẳn là 16 °C, giá trị 16 này đã ảnh hưởng rất nhiều đến khoảng biến thiên.
c)
∙ Hà Nội: 23 25 28 28 32 33 35.
Vì n = 7 là số lẻ nên số trung vị là số chính giữa là Q2 = 28.
Ta tìm Q1 là trung vị của nửa số liệu bên trái Q2:
23; 25; 28.
Do đó Q1 = 25.
Ta tìm Q3 là trung vị của nửa số liệu bên phải Q2:
32; 33; 35.
Do đó Q3 = 33.
Tứ phân vị cho mẫu số liệu này là: Q1 = 25; Q2 = 28, Q3 = 33.
Suy ra ΔQ = Q3 – Q1 = 33 – 25 = 8.
∙ Điện Biên: 16 24 26 26 26 27 28.
Vì n = 7 là số lẻ nên số trung vị là số chính giữa là Q'2 = 26.
Ta tìm Q'1 là trung vị của nửa số liệu bên trái Q'2:
16; 24; 26.
Do đó Q'1 = 24.
Ta tìm Q'3 là trung vị của nửa số liệu bên phải Q'2:
26; 27; 28.
Do đó Q'3 = 27.
Tứ phân vị cho mẫu số liệu này là Q'1 = 24; Q'2 = 26, Q'3 = 27.
Suy ra Δ'Q = Q'3 – Q'1 = 27 – 24 = 3.
Có thể dùng số liệu này để đo độ phân tán của mẫu số liệu.
Hãy tìm khoảng tứ phân vị cho mẫu số liệu này.
Lời giải
Sắp xếp dãy số liệu theo thứ tự không giảm, ta được:
7; 9; 9; 10; 10; 10; 11; 12; 12; 14.
Ta có n = 10 nên trung vị bằng trung bình cộng hai giá trị chính giữa:
Q2 = (10 + 10) : 2 = 10.
Nửa số liệu bên trái Q2: 7 9 9 10 10
Do đó Q1 = 9.
Nửa số liệu bên phải Q2: 10 11 12 12 14
Do đó Q3 = 12.
Vậy khoảng tứ phân vị cho mẫu số liệu là:
2. Phương sai và độ lệch chuẩn
0,398 0,399 0,408 0,410 0,406 0,405 0,402.
(Theo Bài tập Vật lí 10, Nhà xuất bản Giáo dục Việt Nam, 2018)
Lời giải
Số trung bình của mẫu số liệu là:
Ta có bảng sau:
Mẫu số liệu gồm 7 giá trị nên n = 7.
Do đó phương sai là:
Độ lệch chuẩn là:
Đối với số liệu này phương sai và độ lệch chuẩn nhỏ nên độ phân tán của số liệu thấp. Do đó phép đo trên khá chính xác.
3. Phát hiện số liệu bất thường hoặc không chính xác bằng biểu đồ hộp
Lời giải
Ta cố Q1 = 56 và Q3 = 84.
Do đó, khoảng tứ phân vị là:
ΔQ = Q3 – Q1 = 84 – 56 = 28.
Biểu đồ hộp cho mẫu số liệu này là:
Ta có:
Q1 – 1,5.ΔQ = 56 – 1,5.28 = 14;
Q3 + 1,5.ΔQ = 84 + 1,5.28 = 126.
Ta thấy 10 < 14 nên 10 là giá trị bất thường
14 < 100 < 126 nên 100 không là giá trị bất thường.
Bài tập
Bài 5.11 trang 88 Toán 10 Tập 1: Mỗi khẳng định sau đúng hay sai?
(3) Khoảng tứ phân vị có sử dụng thông tin của giá trị lớn nhất, giá trị bé nhất.
(4) Khoảng tứ phân vị chính là khoảng biến thiên của nửa dưới mẫu số liệu đã sắp xếp.
(5) Các số đo độ phân tán đều không âm.
Lời giải:
∙ Khẳng định (1): Nếu các giá trị của mẫu số liệu càng tập trung quanh giá trị trung bình thì độ lệch của mỗi giá trị so với giá trị trung bình càng nhỏ (tức là càng nhỏ, với i = 1; 2; ...; n), dẫn đến độ lệch chuẩn càng nhỏ.
Do đó, khẳng định (1) sai.
∙ Khẳng định (2): Khoảng biến thiên R bằng hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất nên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất.
Do đó, khẳng định (2) đúng.
∙ Khẳng định (3): Khoảng tứ phân vị ΔQ = Q3 − Q1, các giá trị Q1, Q3 không bị ảnh hưởng bởi giá trị của giá trị lớn nhất và giá trị nhỏ nhất (với n > 4).
Do đó, khẳng định (3) sai.
∙ Khẳng định (4): Khoảng tứ phân vị chính là khoảng biến thiên của 50% số liệu chính giữa của mẫu số liệu đã sắp xếp
Do đó, khẳng định (4) sai.
∙ Khẳng định (5): Các số đo độ phân tán là:
Khoảng biến thiên R = Số lớn nhất – Số nhỏ nhất > 0
Trước khi tính khoảng tứ phân vị thì mẫu số liệu được sắp xếp theo thứ tự không giảm
Q3 > Q1 ΔQ = Q3 − Q1 > 0
Phương sai:
Độ lệch chuẩn:
Do đó, các số đo độ phân tán đều không âm
Do đó, khẳng định (5) đúng.
Bài 5.12 trang 88 Toán 10 Tập 1: Cho hai biểu đồ chấm điểm biểu diễn hai mẫu số liệu A, B như sau:
Không tính toán, hãy cho biết:
a) Hai mẫu số liệu này có cùng khoảng biến thiên và số trung bình không?
b) Mẫu số liệu nào có phương sai lớn hơn?
Lời giải:
a) Ta có cả hai mẫu số liệu đều có giá trị nhỏ nhất là 3, giá trị lớn nhất là 9.
Do đó cả hai mẫu số liệu có cùng khoảng biến thiên.
Hai biểu đồ này có dạng đối xứng qua điểm 6 nên giá trị trung bình của hai mẫu số liệu A và B bằng nhau và bằng 6.
b) Từ biểu đồ, ta thấy các giá trị của dãy số liệu B tập trung nhiều hơn quanh giá trị trung bình nên mẫu số liệu B có phương sai nhỏ hơn. Vậy mẫu số liệu A có phương sai lớn hơn.
a) Nhân mỗi giá trị của mẫu số liệu với 2.
b) Cộng mỗi giá trị của mẫu số liệu với 2.
Lời giải:
a) Gọi các giá trị dương của mẫu số liệu ban đầu theo thứ tự không giảm là:
Ta có n = 10 là số chẵn nên trung vị là giá trị trung bình của số thứ 5 và thứ 6.
Do đó Q1 là số thứ 3 và Q3 là số thứ 8.
a) Khi nhân mỗi giá trị của mẫu số liệu với 2 thì
+ Số lớn nhất tăng 2 lần và số nhỏ nhất tăng 2 lần nên khoảng biến thiên R tăng 2 lần.
+ Q1 và Q3 tăng 2 lần nên khoảng tứ phân vị ΔQ = Q3 − Q1 tăng 2 lần.
+ Giá trị trung bình tăng 2 lần.
Nên độ lệch của mỗi giá trị so với giá trị trung bình cũng tăng 2 lần.
Suy ra tăng 4 lần.
Khi đó, phương sai tăng 4 lần.
Do đó độ lệch chuẩn tăng 2 lần.
Vậy các khoảng biến thiên, độ lệch chuẩn, khoảng tứ phân vị của dãy số liệu mới bằng hai lần các khoảng biến thiên, độ lệch chuẩn, khoảng tứ phân vị ban đầu.
b) Khi cộng mỗi giá trị của mẫu số liệu với 2 thì
+ Số lớn nhất tăng 2 đơn vị và số nhỏ nhất tăng 2 đơn vị.
Suy ra khoảng biến thiên R không đổi vì phần tăng thêm bị triệt tiêu cho nhau.
+ Q1 và Q3 tăng 2 đơn vị nên khoảng tứ phân vị ΔQ = Q3 − Q1 không đổi vì phần tăng thêm bị triệt tiêu cho nhau.
+ Giá trị trung bình tăng 2 đơn vị
Nên độ lệch của mỗi giá trị so với giá trị trung bình không đổi vì phần tăng thêm bị triệt tiêu cho nhau.
Suy ra không đổi
Khi đó, phương sai không đổi.
Do đó độ lệch chuẩn không đổi.
Vậy khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn đều không đổi.
Giá trị nhỏ nhất bằng 2,5; Q1 = 36; Q2 = 60; Q3 = 100; giá trị lớn nhất bằng 205.
a) Tỉ lệ thành phố có thuế thuốc lá lớn hơn 36 là bao nhiêu?
b) Chỉ ra hai giá trị sao cho có 50% giá trị của mẫu số liệu nằm giữa hai giá trị này.
c) Tìm khoảng tứ phân vị của mẫu số liệu.
Lời giải:
a) Vì số các giá trị của số liệu n = 51 là số lẻ nên trung vị của số liệu là giá trị thứ 26.
Nửa bên trái số trung vị gồm 25 số liệu là số lẻ nên tứ phân vị thứ nhất là giá trị thứ 13 có giá trị là 36.
Do đó có 51 – 13 = 38 thành phố có thuế thuốc lá lớn hơn 36.
Suy ra tỉ lệ các thành phố có thuế thuốc lá lớn hơn 36 là:
Vậy tỉ lệ các thành phố có thuế thuốc là lớn hơn 36 khoảng 74,51%.
b)
Có nhiều phương án để lựa chọn trong bài này.
Chẳng hạn ta chọn hai giá trị là Q1 và Q3, vì khoảng giữa hai giá trị này là khoảng tứ phân vị và khoảng này là khoảng biến thiên của 50% số liệu chính giữa của mẫu số liệu đã sắp xếp.
Vậy giữa hai giá trị Q1 = 36 và Q3 = 100 có 50% giá trị của mẫu số liệu nằm giữa hai giá trị này.
c) Khoảng tứ phân vị của mẫu số liệu này là:
∆Q = Q3 – Q1 = 100 – 36 = 64.
2,593 3,270 3,813 4,042 3,387.
Hãy tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn cho mẫu số liệu này.
Lời giải
Sắp xếp các giá trị của số liệu trên theo thứ tự từ không giảm là:
2,593; 2,977; 3,155; 3,270; 3,387; 3,412; 3,813; 3,920; 4,042; 4,236.
Ta có giá trị lớn nhất là 4,236 kg và giá trị nhỏ nhất là 2,593 kg.
Khi đó, khoảng biến thiên là: R = 4,236 – 2,593 = 1,643.
Vì n = 10 là số chẵn nên trung vị là trung bình cộng của hai giá trị chính giữa:
Q2 = (3,387 + 3,412) : 2 = 3,3995.
Nửa số liệu bên trái gồm 5 số liệu là một số lẻ nên tứ phân vị thứ nhất là: Q1 = 3,155.
Nửa số liệu bên phải gồm 5 số liệu là một số lẻ nên tứ phân vị thứ ba là: Q3 = 3,920.
Khoảng tứ phân vị là: ∆Q = Q3 – Q1 = 3,920 – 3,155 = 0,765.
Số trung bình cộng của mẫu số liệu là:
Ta có bảng sau:
Phương sai:
Độ lệch chuẩn: .
Vậy khoảng biến thiên R = 1,643, khoảng tứ phân vị độ lệch chuẩn s ≈ 0,489.
7,8 3,2 7,7 8,7 8,6 8,4 7,2 3,6
Hãy tìm các giá trị bất thường (nếu có) của mẫu số liệu trên.
Lời giải:
Sắp xếp dãy số liệu theo thứ tự không giảm, ta được:
3,2; 3,6; 4,4; 4,5; 5,0; 5,4; 6,0; 6,7; 7,0; 7,2; 7,7; 7,8; 8,4; 8,6; 8,7.
Vì n = 15 là số lẻ nên số trung vị là giá trị chính giữa Q2 = 6,7.
Nửa số liệu bên trái có 7 số liệu nên có tứ phân vị thứ nhất là Q1 = 4,5.
Nửa số liệu bên phải có 7 số liệu nên có tứ phân vị thứ ba là Q3 = 7,8.
Khoảng tứ phân vị là: ∆Q = Q3 – Q1 = 7,8 – 4,5 = 3,3.
Ta có:
Q1 – 1,5ΔQ = 4,5 – 4,95 = – 0,45;
Q3 + 1,5ΔQ = 7,8 + 4,95 = 12,75.
Ta thấy không có giá trị nào dưới –0,45 và trên 12,75 nên không có giá trị bất thường.
Vậy mẫu số liệu đã cho không có giá trị nào bất thường.
Lý thuyết Bài 4: Các số đặc trưng đo độ phân tán
1. Khoảng biến thiên và khoảng tứ phân vị
a) Khoảng biến thiên
Khoảng biến thiên, kí hiệu là R, là hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất trong mẫu số liệu.
Ý nghĩa: Khoảng biến thiên dùng để đo độ phân tán của mẫu số liệu. Khoảng biến thiên càng lớn thì mẫu số liệu càng phân tán.
Ví dụ: Hai xạ thủ A và B cùng bắn 10 phát đạn, kết quả được ghi lại như bảng sau:
A |
7 |
9 |
8 |
9 |
9 |
10 |
8 |
7 |
9 |
10 |
B |
8 |
9 |
10 |
7 |
6 |
9 |
10 |
7 |
10 |
10 |
a) Điểm số trung bình của hai xạ thủ A và B có như nhau không?
b) Tính các khoảng biến thiên của hai mẫu số liệu. Căn cứ trên chỉ số này, xạ thủ nào bắn đều hơn?
Hướng dẫn giải
a) Điểm số trung bình của xạ thủ A là: = 8,6 (điểm).
Điểm số trung bình của xạ thủ B là: = 8,6 (điểm)
Vậy điểm kiểm tra trung bình của hai xạ thủ A và B đều bằng 8,6.
b) Đối với xạ thủ A: Điểm số thấp nhất và cao nhất tương ứng là 7 và 10. Do đó khoảng biến thiên là RA = 10 – 7 = 3.
Đối với xạ thủ B: Điểm số thấp nhất và cao nhất tương ứng là 6 và 10. Do đó khoảng biến thiên là RB = 10 – 6 = 4.
Do RB > RA nên ta nói xạ thủ A bắn đều hơn xạ thủ B.
Nhận xét: Sử dụng khoảng biến thiên có ưu điểm là đơn giản, dễ tính toán song khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và giá trị nhỏ nhất mà bỏ qua thông tin từ tất cả các giá trị khác. Do đó, khoảng biến thiên rất dễ bị ảnh hưởng bởi các giá trị bất thường.
b) Khoảng tứ phân vị
Khoảng tứ phân vị, kí hiệu là ∆Q, là hiệu số giữa tứ phân vị thứ ba và tứ phân vị thứ nhất, tức là:
∆Q = Q3 – Q1.
Về bản chất, khoảng tứ phân vị là khoảng biến thiên của 50% số liệu chính giữa của mẫu số liệu đã sắp xếp.
Ý nghĩa: Khoảng tứ phân vị cũng là một số đo độ phân tán của mẫu số liệu. Khoảng tứ phân vị càng lớn thì mẫu số liệu càng phân tán.
Chú ý: Một số tài liệu gọi khoảng biến thiên là biên độ và khoảng tứ phân vị là độ trải giữa.
Ví dụ: Mẫu số liệu sau cho biết số ghế trống tại một rạp xiếc trong 9 ngày:
0 7 3 9 20 11 5 16 19
Tìm khoảng tứ phân vị cho mẫu số liệu trên.
Hướng dẫn giải
Trước hết, ta sắp xếp mẫu số liệu theo thứ tự không giảm:
0 3 5 7 9 11 16 19 20
Mẫu số liệu trên gồm 9 giá trị nên trung vị là số ở vị trí chính giữa Q2 = 9.
Nửa số liệu bên trái là 0; 3; 5; 7 gồm 4 giá trị, hai phần tử chính giữa là 3; 5.
Do đó, Q1 = (3 + 5) : 2 = 4.
Nửa số liệu bên phải là 11; 16; 19; 20 gồm 4 giá trị, hai phần tử chính giữa là 16; 19.
Do đó, Q3 = (16 + 19) : 2 = 17,5.
Vậy khoảng tứ phân vị cho mẫu số liệu là ∆Q = Q3 – Q1 = 17,5 – 4 = 13,5.
2. Phương sai và độ lệch chuẩn
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu (bỏ qua thông tin của tất cả các giá trị khác). Khoảng tứ phân vị chỉ sử dụng thông tin của 50% số liệu chính giữa. Có một vài số đặc trưng khác đo độ phân tán sử dụng thông tin của tất cả các giá trị trong mẫu số liệu. Hai trong số đó là phương sai và độ lệch chuẩn.
Cụ thể với mẫu số liệu x1, x2,..., xn, nếu gọi số trung bình là thì với mỗi giá trị xi, độ lệch của nó so với giá trị trung bình là xi – .
• Phương sai là giá trị .
• Căn bậc hai của phương sai, s = , được gọi là độ lệch chuẩn.
Chú ý: Người ta còn sử dụng đại lượng để đo độ phân tán của mẫu số liệu:
.
Ý nghĩa: Nếu số liệu càng phân tán thì phương sai và độ lệch chuẩn càng lớn.
Ví dụ: Mẫu số liệu sau đây cho biết số học sinh được lên lớp của 7 lớp khối 10 tại một trường Trung học phổ thông:
45 42 47 40 41 44 42
Tìm phương sai và độ lệch chuẩn cho mẫu số liệu trên. Qua các đại lượng này, em có nhận xét gì về độ phân tán của mẫu số liệu?
Hướng dẫn giải
Số trung bình của mẫu số liệu là: = 43.
Ta có bảng sau:
Giá trị |
Độ lệch |
Bình phương độ lệch |
45 |
45 – 43 = 2 |
4 |
42 |
42 – 43 = –1 |
1 |
47 |
47 – 43 = 4 |
16 |
40 |
40 – 43 = –3 |
9 |
41 |
41 – 43 = –2 |
4 |
44 |
44 – 43 = 1 |
1 |
42 |
42 – 43 = –1 |
1 |
Tổng |
36 |
Mẫu số liệu gồm 7 giá trị nên n = 7. Do đó phương sai là: s2 = ≈ 5,14.
Độ lệch chuẩn là: s = ≈ 2,27.
Qua các đại lượng này, ta thấy phương sai và độ lệch chuẩn không lớn nên số liệu không quá phân tán.
3. Phát hiện số liệu bất thường hoặc không chính xác bằng biểu đồ hộp
Trong mẫu số liệu thống kê, có khi ta sẽ gặp phải những giá trị quá lớn hoặc quá nhỏ so với đa số các giá trị khác. Những giá trị này được gọi là giá trị bất thường. Chúng xuất hiện trong mẫu số liệu có thể do nhầm lẫn hay sai sót nào đó. Ta có thể dùng biểu đồ hộp để phát hiện những giá trị bất thường này.
Các giá trị lớn hơn Q3 + 1,5 . ∆Q hoặc bé hơn Q1 – 1,5 . ∆Q được xem là giá trị bất thường.
Ví dụ: Hàm lượng Canxi (đơn vị mg) trong 100 g một số loại thực phẩm được cho như trong bảng sau:
22 |
20 |
20 |
19 |
20 |
0 |
29 |
16 |
13 |
21 |
18 |
34 |
16 |
18 |
10 |
15 |
18 |
14 |
4 |
8 |
Tìm giá trị bất thường trong mẫu số liệu trên bằng cách sử dụng biểu đồ hộp.
Hướng dẫn giải
Sắp xếp các số liệu theo thứ tự không giảm, ta được:
0; 4; 8; 10; 13; 14; 15; 16; 16; 18; 18; 18; 19; 20; 20; 20; 21; 22; 29; 34.
Từ mẫu số liệu trên, ta tính được Q2 = 18; Q1 = 13,5 và Q3 = 20. Do đó khoảng tứ phân vị là:
∆Q = Q3 – Q1 = 20 – 13,5 = 6,5.
Biểu đồ hộp cho mẫu số liệu này là:
Ta có Q1 – 1,5.∆Q = 3,75 và Q3 + 1,5.∆Q = 29,75 nên trong mẫu số liệu có hai giá trị được xem là bất thường là 0 mg (bé hơn 3,75 mg) và 34 mg (lớn hơn 29,75 mg).
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức