Giải Toán 10 Bài 11 (Kết nối tri thức): Tích vô hướng của hai vecto

Với giải bài tập Toán lớp 10 Bài 11: Tích vô hướng của hai vecto sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài 11. 

1 5,220 25/09/2024
Tải về


Giải bài tập Toán 10 Bài 11: Tích vô hướng của hai vecto

1. Góc giữa hai vecto

Giải Toán 10 trang 66 Tập 1

HĐ 1 trang 66 Toán 10 Tập 1: Trong Hình 4.39, số đo góc BAC cũng được gọi là số đo góc giữa hai vectơ AB AC. Hãy tìm số đo các góc giữa BC BD, DA DB.

Trong Hình 4.39, số đo góc BAC cũng được gọi là số đo góc giữa hai vectơ (ảnh 1)

Lời giải

Số đo góc giữa hai vectơ BC BD là góc CBD bằng 30°.

Xét tam giác BCD có BCA^ là góc ngoài của tam giác tại đỉnh C nên:

BCA^=CBD^+CDB^CDB^=BCA^CBD^=80°30°=50°

ADB^=50°

Suy ra số đo góc giữa hai vectơ DA DB là góc ADB bằng 50°.

Vậy số đo góc giữa hai vectơ BC BD bằng 30° và số đo góc giữa hai vectơ DA DB bằng 50°.

Câu hỏi trang 66 Toán 10 Tập 1: Khi nào thì góc giữa hai vectơ bằng 0°, bằng 180°.

Lời giải

Góc giữa hai vectơ bằng 0° khi hai vectơ cùng hướng.

Góc giữa hai vectơ bằng 180° khi hai vectơ ngược hướng.

Luyện tập 1 trang 66 Toán 10 Tập 1: Cho tam giác đều ABC. Tính AB,BC.

Lời giải

Cho tam giác đều ABC. Tính ( vecto AB, vecto BC) (ảnh 1)

Cho tam giác đều ABC. Tính ( vecto AB, vecto BC) (ảnh 1)

Giải Toán 10 trang 67 Tập 1

Câu hỏi trang 67 Toán 10 Tập 1: Khi nào tích vô hướng của hai vectơ khác vectơ-không u,v là một số dương? Là một số âm?

Lời giải

Tích vô hướng của hai vectơ u,v0 được tính bởi công thức sau:

u.v=u.v.cosu,v.

u>0,v>0 nên dấu của tích vô hướng u.v phụ thuộc vào dấu của cosu,v.

+) Tích vô hướng của hai vectơ u.v là một số dương thì cosu,v> 0

Khi đó góc giữa hai vectơ u,v là góc nhọn hoặc bằng 0°.

+) Tích vô hướng của hai vectơ u,v là một số âm thì cosu,v<0.

Khi đó góc giữa hai vectơ u,v là góc tù hoặc bằng 180°.

Vậy khi 0°u,v<90° thì tích vô hướng của hai vectơ u,v là một số dương;

Khi 90°<u,v180° thì tích vô hướng của hai vectơ u,v là một số âm.

Câu hỏi trang 67 Toán 10 Tập 1: Khi nào thì u.v2=u2.v2?

Lời giải

Khi nào thì (vecto u. vecto v)^2 = vecto u ^2. vecto v^2 (ảnh 1)

2. Tích vô hướng của hai vecto

Luyện tập 2 trang 67 Toán 10 Tập 1: Cho tam giác ABC có BC = a, CA = b, AB = c. Hãy tính AB.AC theo a, b, c.

Lời giải

Cho tam giác ABC có BC = a, CA = b, AB = c. Hãy tính vecto AB.AC theo a,b,c (ảnh 1)

Ta có: AB.AC=AB.AC.cosAB,  AC

AB.AC=AB.AC.cosBAC^

AB.AC=bc.cosBAC^

Xét tam giác ABC, theo định lí côsin ta có: cosBAC^=AC2+AB2BC22AC.AB

cosBAC^=b2+c2a22bc

AB.AC=bc.b2+c2a22bc=b2+c2a22

Vậy AB.AC=b2+c2a22.

3. Biểu thức tọa độ và tính chất của tích vô hướng

Giải Toán 10 trang 68 Tập 1

HĐ 2 trang 68 Toán 10 Tập 1: Cho hai vectơ cùng phương u=x;y v=kx;ky. Hãy kiểm tra công thức u.v=kx2+y2 theo từng trường hợp sau:

a) u=0;

b) u0 k0;

c) u0 và k < 0.

Lời giải

Ta có: u=x;y u=x2+y2

v=kx;kyv=kx2+ky2=k2x2+k2y2=k2x2+y2=kx2+y2

a) Vì vectơ 0 vuông góc với mọi vectơ nên vectơ v vuông góc với u=0

Do đó uvu.v=0

Ta có: u=0u=0;0x=0y=0

Do đó kx2+y2=k02+02=0

u.v=kx2+y2=0

Vậy với u=0 thì công thức u.v=kx2+y2 đúng.

b) Vì k ≥ 0 nên vectơ v=kx;kycùng hướng với vectơ u=x;y

u,v=0°

Do đó u.v=uvcosu,v

=x2+y2.kx2+y2.cos0°=k.x2+y2.1=kx2+y2

Vậy với u0 k0 thì công thức u.v=kx2+y2 đúng.

c) Vì k < 0 nên vectơ v=kx;kyngược hướng với vectơ u=x;y

u,v=180°

Do đó: u.v=uvcosu,v

=x2+y2.kx2+y2.cos180°=k.x2+y2.1=kx2+y2

Vậy với u0 và k < 0 thì công thức u.v=kx2+y2 đúng.

HĐ 3 trang 68 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho hai vectơ không cùng phương u=x;y v=x';y'.

a) Xác định tọa độ các điểm A và B sao cho OA=u,OB=v.

b) Tính AB2, OA2, OB2 theo tọa độ của A và B.

c) Tính OA.OB theo tọa độ của A, B.

Lời giải

a) Vì OA=u u=x;y nên OA=x;y suy ra A(x; y).

OB=v v=x';y' nên OB=x';y' suy ra B(x'; y').

b) +) Ta có: A(x; y) và B(x'; y') AB=x'x;y'y

AB=x'x2+y'y2

AB2=x'x2+y'y2.

+) Ta có :

OA=x;yOA=x2+y2OA2=x2+y2.

+) Ta có:

OB=x';y'OB=x'2+y'2OB2=x'2+y'2.

Vậy AB2=x'x2+y'y2; OA2=x2+y2 OB2=x'2+y'2.

c) Ta có: OA.OB=OA.OB.cosOA,OB=OA.OB.cosAOB^

Xét tam giác OAB, theo định lí côsin ta có:

Trong mặt phẳng tọa độ Oxy, cho hai vectơ không cùng phương (ảnh 1)

Trong mặt phẳng tọa độ Oxy, cho hai vectơ không cùng phương (ảnh 1)

Luyện tập 3 trang 68 Toán 10 Tập 1: Tính tích vô hướng và góc giữa hai vectơ u=0;5,v=3;1

Lời giải

Giải Toán 10 Bài 11: Tích vô hướng của hai vecto  - Kết nối tri thức (ảnh 1)

Vậy u.v=5 và góc giữa hai vectơ u,v bằng 120°.

HĐ 4 trang 68 Toán 10 Tập 1: Cho ba vectơ u=x1;y1, v=x2;y2, w=x3;y3.

a) Tính u.v+w,u.v+u.w theo tọa độ các vectơ u,v,w.

b) So sánh u.v+w u.v+u.w.

c) So sánh u.v v.u.

Lời giải

a) Với u=x1;y1,v=x2;y2 w=x3;y3 ta có:

+) v+w=x2+x3;y2+y3

u.v+w=x1.x2+x3+y1.y2+y3=x1.x2+x1.x3+y1.y2+y1.y3.

+) u.v=x1.x2+y1.y2 u.w=x1.x3+y1.y3

u.v+u.w=x1.x2+y1.y2+x1.x3+y1.y3.

b) Theo câu a ta có:

u.v+w=x1.x2+y1.y2+x1.x3+y1.y3 u.v+u.w=x1.x2+y1.y2+x1.x3+y1.y3

u.v+w=u.v+u.w.

Vậy u.v+w=u.v+u.w.

c) Ta có: u.v=x1.x2+y1.y2 v.u=x2.x1+y2.y1=x1.x2+y1.y2.

u.v=v.u.

Vậy u.v=v.u.

Giải Toán 10 trang 70 Tập 1

Luyện tập 4 trang 70 Toán 10 Tập 1: Cho tam giác ABC với A(‒1;2), B(8;‒1), C(8;8). Gọi H là trực tâm của tam giác.

a) Chứng minh rằng AH.BC=0 BH.CA=0

b) Tìm tọa độ của H.

c) Giải tam giác ABC.

Cho tam giác ABC với A(‒1;2), B(8;‒1), C(8;8). Gọi H là trực tâm (ảnh 1)

Lời giải

a) Vì H là trực tâm của tam giác ABC nên:

+) AHBCAHBCAH.BC=0;

+) BHCABHCABH.CA=0.

Vậy AH.BC=0 BH.CA=0.

b) Gọi tọa độ điểm H là H(x; y).

Ta có: A(‒1;2), B(8;‒1), C(8;8) và H(x; y).

AH=x+1;y2;BC=0;9 BH=x8;y+1;AC=9;6

Suy ra AH.BC=x+1.0+y2.9=9y2.

BH.AC=x8.9+y+1.6=9x72+6y+6=9x+6y66.

Theo câu a ta có: AH.BC=0 9(y – 2) = 0 y – 2 = 0 y = 2.

BH.AC=0 (do BH AC) 9x + 6y – 66 = 0.

Thay y = 2 vào 9x + 6y – 66 = 0 ta được: 9x + 6.2 – 66 = 0

9x – 54 = 0

9x = 54

x = 6

H(6; 2)

Vậy H(6; 2).

c) Với A(‒1;2), B(8;‒1), C(8;8) ta có:

Cho tam giác ABC với A(‒1;2), B(8;‒1), C(8;8). Gọi H là trực tâm (ảnh 1)

Xét tam giác ABC, theo định lí tổng ba góc trong một tam giác ta có: BAC^+ABC^+ACB^=180°

ACB^=180°BAC^+ABC^

ACB^180°52°8'+71°34'56°18'

Vậy

AB=310,AC=313,BC=9,BAC^52°8',ABC^71°34',ACB^56°18'.

Vận dụng trang 70 Toán 10 Tập 1: Một lực F không đổi tác động vào một vật và điểm đặt của lực chuyển động thẳng từ A đến B. Lực F được phân tích thành hai lực thành phần F1 F2 F=F1+F2

a) Dựa vào tính chất của tích vô hướng, hãy giải thích vì sao công sinh bởi lực F (đã được đề cập ở trên) bằng tổng của các công sinh bởi các lực F1 F2

b) Giả sử các lực thành phần F1 F2 tương ứng cùng phương, vuông góc với phương chuyển động của vật. Hãy tìm mối quan hệ giữa các công sinh bởi lực F và lực F1

Một lực F không đổi tác động vào một vật và điểm đặt của lực chuyển động (ảnh 1)

Lời giải

a) Một lực F tác động lên một vật làm vật dịch chuyển tịnh tiến theo một vectơ độ rời s.

+) Công sinh bởi lực F AF=F.s

+) Công sinh bởi lực F1 AF1=F1.s

+) Công sinh bởi lực F2 AF2=F2.s

Suy ra AF1+AF2=F1.s+F2.s=F1+F2.s (tính chất phân phối đối với phép cộng của tích vô hướng)

F=F1+F2 do đó AF1+AF2=F1+F2.s=F.s=AF

Vậy AF=AF1+AF2.

b) +) Công sinh bởi lực F AF=F.s=F.s.cosF,s

Do vật chuyển động thẳng từ A đến B nên s cùng hướng với F1.

Suy ra F,s=F,F1

Do đó AF=F.s.cosF,F1

Ta lại có: F1=F.cosF,F1

AF=F1.s (1)

+) Công sinh bởi lực F1 AF1=F1.s=F1.s.cosF1,s

Do s cùng hướng với F1 nên F1,s=0°

AF1=F1.s.cos00=F1.s(2)

Từ (1) và (2) suy ra AF=AF1=F1.s.

Vậy AF=AF1.

Bài tập

Bài 4.21 trang 70 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ a b trong mỗi trường hợp sau:

a) a=3;1,b=2;6;

b) a=3;1,b=2;4;

c) a=2;1,b=2;2;

Lời giải

Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ a và vecto b (ảnh 1)

Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ a và vecto b (ảnh 1)

Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ a và vecto b (ảnh 1)

Bài 4.22 trang 70 Toán 10 Tập 1: Tìm điều kiện của u,v để:

a) u.v=u.v;

b) u.v=u.v;

Lời giải

a) Ta có: u.v=u.v.cosu,v

Để u.v=u.v thì u.v.cosu,v=u.v

cosu,v=1u,v=0°

Suy ra u,v là hai vectơ cùng hướng.

Vậy hai vectơ u,v cùng hướng thì u.v=u.v.

b) Ta có: u.v=u.v.cosu,v

Để u.v=u.v thì u.v.cosu,v=u.v

cosu,v=1u,v=180°

Suy ra u,v là hai vectơ ngược hướng.

Vậy hai vectơ u,v ngược hướng thì u.v=u.v.

Bài 4.23 trang 70 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2), B(‒4; 3). Gọi M(t; 0) là một điểm thuộc trục hoành.

a) Tính AM.BM theo t;

b) Tính t để AMB^=90°.

Lời giải

a) Với A(1; 2), B(‒4; 3) và M(t; 0) ta có:

AM=t1;2,BM=t+4;3

AM.BM=t1t+4+2.3=t2+3t4+6=t2+3t+2.

b) Để AMB^=90° thì MA.MB=0AM.BM=0

t2+3t+2=0t+1t+2=0t=1t=2

Vậy với t1;2 thì AMB^=90°.

Bài 4.24 trang 70 SGK Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(‒4; 1), B(2; 4), C(2; ‒2).

a) Giải tam giác ABC.

b) Tìm tọa độ trực tâm H của tam giác ABC.

Lời giải

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(‒4; 1), B(2; 4) (ảnh 1)

+) Theo định lí cosin, ta có:

cosA=AB2+AC2BC22.AB.AC=352+352622.35.35=5490=35

A^53°8'

Tam giác ABC có AB = AC nên tam giác ABC cân tại A

B^=C^=1800A^2180°53°8'2=63°26'.

Vậy: AB=AC=35,BC=6,A^53°8',B^=C^63°26'.

b) Giả sử trực tâm H của tam giác ABC có tọa độ là H(x; y).

Do H là trực tâm của tam giác ABC nên AHBC;BHACAHBC;BHAC

Với A(‒4; 1), B(2; 4), C(2; ‒2) và H(x; y) ta có:

AH=x+4;y1;BC=0;6;BH=x2;y4;AC=6;3

AHBC nên AH.BC=0 (x + 4).0 + (y – 1).(‒6) = 0‒6.(y – 1) = 0y = 1.

BHAC nên BH.AC=0Û (x – 2).6 + (y – 4).(‒3) = 0

(x – 2).2 + (y – 4).(‒1) = 0 Û 2x – y = 0.

Mà y = 1 2x1=0x=12.

Vậy toạ độ trực tâm H của tam giác ABC là H12;1.

Bài 4.25 trang 70 Toán 10 Tập 1: Chứng minh rằng với mọi tam giác ABC:

SABC=12AB2.AC2AB.AC2.

Lời giải

Cách 1:

Chứng minh rằng với mọi tam giác ABC, ta có (ảnh 1)

Chứng minh rằng với mọi tam giác ABC, ta có (ảnh 1)

Cách 2:

Chứng minh rằng với mọi tam giác ABC, ta có (ảnh 1)

Chứng minh rằng với mọi tam giác ABC, ta có (ảnh 1)

Chứng minh rằng với mọi tam giác ABC, ta có (ảnh 1)

Bài 4.26 trang 70 Toán 10 Tập 1: Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M,

MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2.

Lời giải

MA2+ MB2+ MC2=MA2+MB2+MC2

=MG+GA2+MG+GB2+MG+GC2 (Quy tắc ba điểm)

=MG2+2MG.GA+GA2+MG2+2MG.GB+GB2+MG2+2MG.GC+GC2=MG2+MG2+MG2+2MG.GA+2MG.GB+2MG.GC+GA2+GB2+GC2

=3MG2+2MG.GA+GB+GC+GA2+GB2+GC2

Vì G là trọng tâm tam giác ABC nên GA+GB+GC=0 (tính chất trọng tâm tam giác)

MG.GA+GB+GC=MG.0=0

MA2+ MB2+ MC2=3MG2+GA2+GB2+GC2.

MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2.

Vậy MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2.

Lý thuyết Bài 11: Tích vô hướng của hai vectơ

1. Góc giữa hai vectơ

Cho hai vectơ uv khác 0. Từ một điểm A tùy ý, vẽ các vectơ AB=uAC=v. Khi đó, số đo của góc BAC được gọi là số đo góc giữa hai vectơ uv hay đơn giản là góc giữa hai vectơ u, v, kí hiệu là (u, v).

Lý thuyết Toán 10 Kết nối tri thức Bài 11: Tích vô hướng của hai vectơ

Chú ý :

+ Quy ước rằng góc giữa hai vectơ u0 có thể nhận một giá trị tùy ý từ 0° đến 180°.

+ Nếu (u, v) = 90° thì ta nói rằng uv vuông góc với nhau. Kí hiệu uv hoặc vu. Đặc biệt được coi là vuông góc với mọi vectơ.

Ví dụ: Cho tam giác ABC vuông tại A và B^=30°. Tính (AB,AC), (CA,CB), (AB,BC).

Hướng dẫn giải

Lý thuyết Toán 10 Kết nối tri thức Bài 11: Tích vô hướng của hai vectơ

Ta có (AB,AC) = BAC^=90°.

Tam giác ABC vuông tại A nên ta có .

ACB^+ABC^=90°ACB^=90°ABC^=90°30°=60°

Suy ra: (CA,CB)=ACB^=60°.

Vẽ BD sao cho BD = AB. Khi đó (AB,BC) = (BD,BC) = CBD^.

Mặt khác ABC^+CBD^=180° (hai góc kề bù)

Suy ra CBD^=180°ABC^=180°30°=150°.

Do đó, (AB,BC) = CBD^ = 150°.

Vậy (AB,AC) = 90°, (CA,CB) = 60°, (AB,BC) = 150°.

2. Tích vô hướng của hai vectơ

Tích vô hướng của hai vectơ khác vectơ-không uv là một số, kí hiệu là u.v, được xác định bởi công thức sau:

u. v = |u|.|v|.cos(u, v)

Chú ý:

+) uvu. v = 0.

+) u. u còn được viết là u2 và được gọi là bình phương vô hướng của vectơ u.

Ta có u2=|u|.|u|.cos0°=u2.

(Bình phương vô hướng của một vectơ bằng bình phương độ dài của vectơ đó.)

Ví dụ: Cho tam giác đều ABC có cạnh bằng 2 và có đường cao AH. Tính các tích vô hướng:

a) AB.AC;

b) AH.BC.

Hướng dẫn giải

Lý thuyết Toán 10 Kết nối tri thức Bài 11: Tích vô hướng của hai vectơ

a) Vì tam giác ABC đều nên (AB,AC)=BAC^=60°.

Suy ra: AB.AC=|AB|.|AC|cos(AB,AC)=2.2.cos60°=2.2.12=2.

Vậy AB.AC = 2.

b) Vì AH là đường cao của tam giác ABC nên AH ⊥ BC.

Do đó (AH,BC)=90°.

Ta có: AH.BC=|AH|.|BC|cos(AH,BC)=|AH|.|BC|cos90°=|AH|.|BC|.0=0.

Vậy AH.BC = 0.

3. Biểu thức tọa độ và tính chất của tích vô hướng

• Tích vô hướng của hai vectơ u=(x;y)v=(x';y') được tính theo công thức :

u. v = x.x' + y.y'.

Nhận xét:

+ Hai vectơ uv vuông góc với nhau khi và chỉ khi x.x' + y.y' = 0.

+ Bình phương vô hướng của u=(x;y)u2 = x2 + y2.

+ Nếu u0v0 thì cos(u, v) = u.v|u|.|v|=xx'+yy'x2+y2.x'2+y'2.

Ví dụ: Trong mặt phẳng tọa độ cho hai vectơ u=(0;5)v=(3;1) .

a) Tính tích vô hướng của hai vectơ trên.

b) Tìm góc giữa của hai vectơ trên.

Hướng dẫn giải

a) Ta có: u. v = 0.3 + (–5).1= –5;

Vậy u. v = –5.

b) Ta có |u|=02+(5)2=5; |v|=(3)2+12=2

Suy ra : cos(u, v) = u.v|u|.|v|=55.2=510=12.

Suy ra (u, v) = 120°.

Vậy (u, v) = 120°.

Tính chất của tích vô hướng :

Với ba vectơ u, v, w bất kì và mọi số thực k, ta có :

+) u. v = v. u (tính chất giao hoán);

+) u. (v + w) = u. v + u. w (tính chất phân phối đối với phép cộng) ;

+) (k u). v = k (u. v) = u.( kv).

Chú ý: Từ tính trên, ta có thể chứng minh được :

u. (vw)= u. vu. w (tính chất phân phối đối với phép trừ) ;

(u + v)2 = u2 + 2u. v + v2; (uv)2 = u2 –2u.v + v2;

(u + v).(uv) = u2v2.

Ví dụ: Cho tam giác ABC. Chứng minh rằng với điểm M tùy ý ta có:

MA.BC+MB.CA+MC.AB=0.

Hướng dẫn giải

Ta có MA.BC=MA.(MCMB)=MA.MCMA.MB;(1)

MB.CA=MB.(MAMC)=MB.MAMB.MC; (2)

MC.AB=MC.(MBMA)=MC.MBMC.MA. (3)

Cộng các kết quả từ (1), (2), (3), ta được: MA.BC+MB.CA+MC.AB=0

Vậy MA.BC+MB.CA+MC.AB=0.

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài tập cuối chương 4

Bài 12: Số gần đúng và sai số

Bài 13: Các số đặc trưng đo xu thế trung tâm

Bài 14: Các số đặc trưng. Đo độ phân tán

Bài ôn tập cuối chương 5

1 5,220 25/09/2024
Tải về


Xem thêm các chương trình khác: