Giải Toán 10 trang 68 Tập 1 | Kết nối tri thức Giải Toán lớp 10

Với giải bài tập Toán lớp 10 trang 68 Tập 1 trong Bài 11: Tích vô hướng của hai vecto sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 68 Tập 1.

1 674 03/06/2023


Giải Toán 10 trang 68 Tập 1

HĐ 2 trang 68 Toán 10 Tập 1: Cho hai vectơ cùng phương u=x;y và v=kx;ky. Hãy kiểm tra công thức u.v=kx2+y2 theo từng trường hợp sau:

a) u=0;

b) u0 và k0;

c) u0 và k < 0.

Lời giải

Ta có: u=x;y u=x2+y2 

v=kx;kyv=kx2+ky2=k2x2+k2y2=k2x2+y2=kx2+y2

a) Vì vectơ 0 vuông góc với mọi vectơ nên vectơ v vuông góc với u=0 

Do đó uvu.v=0

Ta có: u=0u=0;0x=0y=0

Do đó kx2+y2=k02+02=0

u.v=kx2+y2=0

Vậy với u=0 thì công thức u.v=kx2+y2 đúng.

b) Vì k ≥ 0 nên vectơ v=kx;kycùng hướng với vectơ u=x;y

u,v=0°

Do đó u.v=uvcosu,v

=x2+y2.kx2+y2.cos0°=k.x2+y2.1=kx2+y2

Vậy với u0 và k0 thì công thức u.v=kx2+y2 đúng.

c) Vì k < 0 nên vectơ v=kx;kyngược hướng với vectơ u=x;y

 u,v=180°

Do đó: u.v=uvcosu,v

=x2+y2.kx2+y2.cos180°=k.x2+y2.1=kx2+y2

Vậy với u0 và k < 0 thì công thức u.v=kx2+y2 đúng.

HĐ 3 trang 68 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho hai vectơ không cùng phương u=x;y và v=x';y'.

a) Xác định tọa độ các điểm A và B sao cho OA=u,OB=v.

b) Tính AB2, OA2, OB2 theo tọa độ của A và B.

c) Tính OA.OB theo tọa độ của A, B.

Lời giải

a) Vì OA=u mà u=x;y nên OA=x;y suy ra A(x; y).

Vì OB=v mà v=x';y' nên OB=x';y' suy ra B(x'; y').

b) +) Ta có: A(x; y) và B(x'; y') AB=x'x;y'y

AB=x'x2+y'y2

AB2=x'x2+y'y2.

+) Ta có :

OA=x;yOA=x2+y2OA2=x2+y2.

+) Ta có: 

OB=x';y'OB=x'2+y'2OB2=x'2+y'2.

Vậy AB2=x'x2+y'y2; OA2=x2+y2 và OB2=x'2+y'2.

c) Ta có: OA.OB=OA.OB.cosOA,OB=OA.OB.cosAOB^ 

Xét tam giác OAB, theo định lí côsin ta có: 

Trong mặt phẳng tọa độ Oxy, cho hai vectơ không cùng phương (ảnh 1)

Trong mặt phẳng tọa độ Oxy, cho hai vectơ không cùng phương (ảnh 1)

Luyện tập 3 trang 68 Toán 10 Tập 1Tính tích vô hướng và góc giữa hai vectơ u=0;5,v=3;1

Lời giải

Giải Toán 10 Bài 11: Tích vô hướng của hai vecto  - Kết nối tri thức (ảnh 1)

Vậy u.v=5 và góc giữa hai vectơ u,v bằng 120°.

HĐ 4 trang 68 Toán 10 Tập 1Cho ba vectơ  u=x1;y1, v=x2;y2, w=x3;y3.

a) Tính u.v+w,u.v+u.w theo tọa độ các vectơ u,v,w.

b) So sánh u.v+w và u.v+u.w.

c) So sánh u.v và v.u.

Lời giải

a) Với u=x1;y1,v=x2;y2 và w=x3;y3  ta có:

+) v+w=x2+x3;y2+y3

u.v+w=x1.x2+x3+y1.y2+y3=x1.x2+x1.x3+y1.y2+y1.y3.

+) u.v=x1.x2+y1.y2 và u.w=x1.x3+y1.y3

u.v+u.w=x1.x2+y1.y2+x1.x3+y1.y3.

b) Theo câu a ta có:

u.v+w=x1.x2+y1.y2+x1.x3+y1.y3 và u.v+u.w=x1.x2+y1.y2+x1.x3+y1.y3

u.v+w=u.v+u.w.

Vậy u.v+w=u.v+u.w.

c) Ta có: u.v=x1.x2+y1.y2 và v.u=x2.x1+y2.y1=x1.x2+y1.y2.

u.v=v.u.

Vậy u.v=v.u.

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác: 

Giải Toán 10 trang 66 Tập 1

Giải Toán 10 trang 67 Tập 1

Giải Toán 10 trang 70 Tập 1

1 674 03/06/2023


Xem thêm các chương trình khác: