Giải Toán 10 (Kết nối tri thức) Bài tập cuối chương 1

Với giải bài tập Toán lớp 10 Bài tập cuối chương 1 sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài Bài tập cuối chương 1

1 9,870 25/09/2024
Tải về


Giải bài tập Toán 10 Bài tập cuối chương 1

A. Trắc nghiệm

Giải Toán 10 trang 20 Tập 1

Bài 1.17 trang 20 Toán 10 Tập 1: Câu nào sau đây không là mệnh đề?

A. Tam giác đều là tam giác có ba cạnh bằng nhau.

B. 3 < 1.

C. 4 – 5 = 1.

D. Bạn học giỏi quá!

Lời giải

Đáp án đúng là D.

“Bạn học giỏi quá!” là một câu cảm thán không xác định đúng sai nên không phải là mệnh đề.

Bài 1.18 trang 20 Toán 10 Tập 1: Cho định lí: “Nếu hai tam giác bằng nhau thì diện tích của chúng bằng nhau”. Mệnh đề nào sau đây là đúng?

A. Hai tam giác bằng nhau là điều kiện cần để diện tích của chúng bằng nhau.

B. Hai tam giác bằng nhau là điều kiện cần và đủ để chúng có diện tích bằng nhau.

C. Hai tam giác có diện tích bằng nhau là điều kiện đủ để chúng bằng nhau.

D. Hai tam giác bằng nhau là điều kiện đủ để diện tích của chúng bằng nhau.

Lời giải

Đáp án đúng là D.

Mệnh đề P Q khi đó, P là điều kiện đủ của Q và Q là điều kiện cần của P.

Hai tam giác bằng nhau là điều kiện đủ để diện tích của chúng bằng nhau. Do đó D đúng, A sai.

Hai tam giác có diện tích bằng nhau là điều kiện cần để chúng bằng nhau. Do đó C sai.

Hai tam giác có diện tích bằng nhau nhưng chưa chắc đã bằng nhau nên không thể là điều kiện cần và đủ để chúng bằng nhau. Do đó B sai.

Bài 1.19 trang 20 Toán 10 Tập 1: Mệnh đề nào sau đây là đúng?

A. x,x2>1x>1.

B. x,x2>1x>1.

C. x,x>1x2>1.

D. x,x>1x2>1.

Lời giải

Đáp án đúng là D

Ta có: x2 > 1 (x – 1)(x + 1) > 0 x<1x>1. Do đó mệnh đề A và mệnh đề B sai.

Với x = 0 > - 1, x2 = 0 < 1. Do đó mệnh đề C sai.

Vậy mệnh đề D đúng.

Bài 1.20 trang 20 Toán 10 Tập 1: Cho tập hợp A = {a; b; c}. Tập A có tất cả bao nhiêu tập con?

A. 4.

B. 6.

C. 8.

D. 10.

Lời giải

Đáp án đúng là C.

Cách 1: Có 3 tập hợp con của A có một phần tử là: {a}, {b}, {c}.

Có 3 tập hợp con của A có hai phần tử là: {a; b}, {a; c}, {b; c}.

Có 1 tập hợp con của A có ba phần tử là: {a; b; c}.

Và tập cũng là tập con của tập A

Vậy tập A có tất cả 8 tập con.

Cách 2: Vì a có 3 phần tử nên số tập con của A là 23 = 8 (tập)

Chọn C

Bài 1.21 trang 20 Toán 10 Tập 1: Cho các tập hợp A, B được minh họa bằng biểu đồ Ven như hình bên.

Cho các tập hợp A, B được minh họa bằng biểu đồ Ven như hình bên (ảnh 1)

Phần tô màu xám trong hình là biểu diễn của tập hợp nào sau đây?

A. AB.

B. A\B.

C. AB.

D. B\A.

Lời giải

Đáp án đúng là A.

Phần tô màu xám vừa thuộc tập A cũng vừa thuộc tập B nên phần này biểu diễn cho những phần tử thuộc cả A và B nên phần tô màu xám thể hiện tập hợp AB.

B. Tự luận

Bài 1.22 trang 20 Toán 10 Tập 1: Biểu diễn các tập hợp sau bằng sơ đồ Ven:

a) A = {0; 1; 2; 3};

b) B = {Lan; Huệ; Trang}.

Lời giải

a) Sơ đồ Ven biểu diễn cho tập A là:

Biểu diễn các tập hợp sau bằng sơ đồ Ven (ảnh 1)

b) Sơ đồ Ven biểu diễn cho tập B là:

Biểu diễn các tập hợp sau bằng sơ đồ Ven (ảnh 1)

Bài 1.23 trang 20 Toán 10 Tập 1: Phần không bị gạch trên trục số dưới đây biểu diễn tập hợp số nào?

Phần không bị gạch trên trục số dưới đây biểu diễn tập hợp số nào (ảnh 1)

Lời giải

Phần không bị gạch trên trục số biểu diễn tập: ;25;+.

Giải Toán 10 trang 21 Tập 1

Bài 1.24 trang 21 Toán 10 Tập 1: Cho A=x|x<7; B = {1; 2; 3; 6; 7; 8}. Xác định các tập hợp sau: AB;AB;A\B.

Lời giải

Tập hợp A gồm các phần tử là các số tự nhiên nhỏ hơn 7 nên A = {0; 1; 2; 3; 4; 5; 6}.

Khi đó:

AB=0;  1;  2;  3;  4;  5;  6;  7;  8;

AB=1;  2;  3;  6;

A\B=0;  4;  5.

Bài 1.25 trang 21 Toán 10 Tập 1: Cho hai tập hợp A = [-2; 3] và B=1;+. Xác định các tập hợp sau: AB;B\A CB.

Lời giải

Ta có:

Giải Toán 10 Bài tập cuối chương 1 - Kết nối tri thức (ảnh 1)

Do đó:

+ Giao của hai tập hợp A và B là: A ∩ B = [– 2; 3] ∩ (1; + ∞) = (1; 3].

+ Hiệu của B và A là: B \ A = (1; + ∞) \ [– 2; 3] = (3; + ∞).

+ Phần bù của B trong ℝ là: CB = ℝ \ B = ℝ \ (1; + ∞) = (– ∞; 1].

Bài 1.26 trang 21 Toán 10 Tập 1: Xác định các tập hợp sau và biểu diễn chúng trên trục số.

a) ;10;+;

b) 4;71;5;

c) 4;7\3;5.

Lời giải

a) ;10;+=0;1

Biểu diễn trên trục số, ta được:

Xác định các tập hợp sau và biểu diễn chúng trên trục số (ảnh 1)

b) 4;71;5=1;7

Xác định các tập hợp sau và biểu diễn chúng trên trục số (ảnh 1)

c) 4;7\3;5=5;7

Xác định các tập hợp sau và biểu diễn chúng trên trục số (ảnh 1)

Bài 1.27 trang 21 Toán 10 Tập 1: Một cuộc khảo sát về khách du lịch thăm vịnh Hạ Long cho thấy trong 1 410 khách du lịch được phỏng vấn có 789 khách du lịch đến thăm động Thiên Cung, 690 khách du lịch đến thăm đảo Titop. Toàn bộ khách được phỏng vấn đã đến ít nhất một trong hai địa điểm trên. Hỏi có bao nhiêu khách du lịch vừa đến thăm động Thiên Cung vừa đến thăm đảo Titop ở Vịnh Hạ Long?

Lời giải

Số khách du lịch vừa đến thăm động Thiên Cung vừa đến thăm đảo Titop là:

789 + 690 – 1 410 = 69 (khách)

Vậy có 69 khách du lịch vừa đến thăm động Thiên Cung vừa đến thăm đảo Titop.

Lý thuyết Tổng hợp lý thuyết chương 1

1. Mệnh đề, mệnh đề chứa biến

1.1. Mệnh đề

- Những khẳng định có tính đúng hoặc sai gọi là mệnh đề logic (gọi tắt là mệnh đề). Những câu không xác định được tính đúng sai không phải là mệnh đề.

- Mỗi mệnh đề phải hoặc đúng hoặc sai. Một mệnh đề không thể vừa đúng vừa sai.

Ví dụ 1:

Câu “Hoa hồng rất đẹp nhất trong các loài hoa” là câu khẳng định nhưng không xác định được tính đúng sai nên câu này không là mệnh đề.

Câu “Bây giờ là mấy giờ?” là một câu hỏi không xác định được tính đúng sai nên câu này không là mệnh đề.

Câu “8 + 1 > 9” là một câu khẳng định có thể xác định được tính đúng sai nên câu này là mệnh đề.

Câu “Số 1 tỉ là số rất lớn” là một câu khẳng định tuy nhiên câu này mang tính quan điểm cá nhân không xác định đước tính đúng sai nên không là mệnh đề.

Chú ý:

- Người ta thường sử dụng các chữ cái P, Q, R, … để biểu thị các mệnh đề.

- Những mệnh đề liên quan đến toán học được gọi là mệnh đề toán học.

- Những câu nghi vấn, câu cảm thán, câu cầu khiến không phải là mệnh đề.

Ví dụ 2:

+ “Hà Nội là thủ đô của Việt Nam” là một mệnh đề nhưng không phải mệnh đề toán học vì không phải sự kiện trong toán học.

+ “Số π là một số hữu tỉ” là mệnh đề toán học.

1.2. Mệnh đề chứa biến

- Mệnh đề chứa biến là một câu khẳng định chứa biến nhận giá trị trong một tập D nào đó mà với mỗi giá trị của biến thuộc vào D ta được một mệnh đề.

- Ta thường kí hiệu mệnh đề chứa biến n là P(n); mệnh đề chứa biến x, y là P(x, y), ….

Ví dụ:

+ “Với mọi giá trị thực của biến x, |x| x”: không phải là mệnh đề chứa biến vì:

Ta có |x| x với mọi giá trị thực của biến x nên đây là khẳng định đúng. Do đó phát biểu này là một mệnh đề không phải mệnh đề chứa biến.

+ “5n chia hết cho 2” là mệnh đề chứa biến.

Khi n = 4 thì mệnh đề này là mệnh đề đúng, khi n = 5 thì mệnh đề này là mệnh đề sai.

2. Mệnh đề phủ định

- Để phủ định một mệnh đề P, người ta thường thêm (hoặc bớt) từ “không” hoặc “không phải” vào trước vị ngữ của mệnh đề P. Ta kí hiệu mệnh đề phủ định của mệnh đề P là P¯ .

- Mệnh đề P và mệnh đề P¯ là hai phát biểu trái ngược nhau. Nếu P đúng thì P¯ sai, còn nếu P sai thì P¯ đúng.

Ví dụ: “5 không chia hết cho 3” là mệnh đề phủ định của mệnh đề “5 chia hết cho 3”;

“3 là hợp số” là mệnh đề phủ định của mệnh đề “3 không là hợp số”.

3. Mệnh đề kéo theo, mệnh đề đảo

3.1. Mệnh đề kéo theo

- Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo và kí hiệu là P Q.

- Các định lí toán học là những mệnh đề đúng và thường có dạng P Q. Khi đó ta nói:

P là giả thiết của định lí, Q là kết luận của định lí hoặc

“P là điều kiện đủ để có Q”, hoặc “Q là điều kiện cần để có P”.

Chú ý: Mệnh đề P Q chỉ sai khi P đúng và Q sai. Do đó ta chỉ cần xét tính đúng sai của mệnh đề P Q khi P đúng. Khi đó, nếu Q đúng thì P Q đúng, nếu Q sai thì P Q sai.

Ví dụ: Cho 2 mệnh đề: P: “9 chia hết cho 9”; Q: “9 chia hết cho 3”.

“Nếu 9 chia hết cho 9 thì 9 chia hết cho 3” là mệnh đề kéo theo của P và Q.

P là mệnh đề đúng và Q là mệnh đề đúng nên mệnh đề kéo theo P Q là mệnh đề đúng.

3.2. Mệnh đề đảo

- Mệnh đề Q P được gọi là mệnh đề đảo của mệnh đề P Q.

Nhận xét: Mệnh đề đảo của một mệnh đề đúng không nhất thiết là đúng.

Ví dụ: Cho 2 mệnh đề: P: “n = 0”; Q: “n là số nguyên”.

Mệnh đề kéo theo P Q được phát biểu là: “Nếu n = 0 thì n là số nguyên”.

Mệnh đề đảo Q P được phát biểu là “Nếu n là số nguyên thì n = 0”.

- Mệnh đề P Q là mệnh đề đúng còn mệnh đề Q P không đúng.

4. Mệnh đề tương đương

- Mệnh đề “P nếu và chỉ nếu Q” được gọi là một mệnh đề tương đương và kí hiệu P Q .

Nhận xét:

- Nếu cả hai mệnh đề Q P và P Q đều đúng thì hai mệnh đề tương đương P Q đúng. Khi đó ta nói “P tương đương với Q” hoặc “P là điều kiện cần và đủ để có Q” hoặc “P khi và chỉ khi Q”.

Ví dụ: Cho 2 mệnh đề: P: “Tứ giác ABCD là hình bình hành”; Q: “Tứ giác ABCD có hai cặp cạnh đối song song”.

“Nếu tứ giác ABCD là hình bình hành thì tứ giác ABCD có hai cặp cạnh đối song song” là mệnh đề P Q.

“Nếu tứ giác ABCD có hai cặp cạnh đối song song thì tứ giác ABCD là hình bình hành” là mệnh đề Q P.

Hai mệnh đề này đều đúng nên P và Q là hai mệnh đề tương đương.

Khi đó mệnh đề P Q được phát biểu như sau: “Tứ giác ABCD là hình bình hành khi và chỉ khi tứ giác ABCD có hai cặp cạnh đối song song”.

5. Mệnh đề có chứa kí hiệu

- Kí hiệu đọc là “với mọi”.

- Kí hiệu đọc là “có một” hoặc “tồn tại”.

- Cho mệnh đề “ Px,xD”.

+ Phủ định của mệnh đề “ xD,Px” là mệnh đề “ xD,Px¯”.

+ Phủ định của mệnh đề “xD,Px ” là mệnh đề “ xD,Px¯”.

Chú ý:

+ Phát biểu “Với mọi số tự nhiên n” có thể kí hiệu là n .

+ Phát biểu “Tồn tại số tự nhiên n” có thể kí hiệu là n .

Ví dụ:

Phủ định của mệnh đề “ x,x2+1=0” là mệnh đề: “ x,x2+10”.

6. Các khái niệm cơ bản về tập hợp

6.1. Tập hợp

• Có thể mô tả một tập hợp bằng một trong hai cách sau:

Cách 1. Liệt kê các phần tử của tập hợp;

Cách 2. Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp.

  • a S: phần tử a thuộc tập hợp S.
  • a S: phần tử a không thuộc tập hợp S.

Chú ý: Số phần tử của tập hợp S được kí hiệu là n(S).

Ví dụ:

- Cho tập hợp A là tập hợp các số tự nhiên chia hết cho 2, lớn hơn 5 và nhỏ hơn 15.

+ Ta mô tả tập hợp A bằng hai cách như sau:

Cách 1: Liệt kê các phần tử của tập hợp: A = {6; 8; 10; 12; 14};

Cách 2: Chỉ ra tính chất đặc trưng của các phẩn tử: A = {n | n ⁝ 2, 5 < n < 15}.

+ Tập hợp A có 5 phần tử, ta viết: n(A) = 5.

+ 10 thuộc tập hợp A, ta viết 10 A.

+ 15 không thuộc tập hợp A, ta viết 15 A.

Tập hợp không chứa phần tử nào được gọi là tập rỗng, kí hiệu là .

Ví dụ:

+ Tập hợp các nghiệm của phương trình x2 + 1 = 0 là tập rỗng;

+ Tập hợp những người sống trên Mặt Trời là tập rỗng.

6.2. Tập hợp con

• Nếu mọi phần tử của tập hợp T đều là phần tử của tập hợp S thì ta nói T là một tập hợp con (tập con) của S và viết là T S (đọc là T chứa trong S hoặc T là tập con của S).

- Thay cho T S, ta còn viết S T (đọc là S chứa T).

- Kí hiệu T S để chỉ T không là tập con của S.

Nhận xét:

- Từ định nghĩa trên, T là tập con của S nếu mệnh đề sau đúng:

x, x T x S.

- Quy ước tập rỗng là tập con của mọi tập hợp.

• Người ta thường minh họa một tập hợp bằng một hình phẳng được bao quanh bởi một đường kín, gọi là biểu đồ Ven.

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

Minh họa T là một tập con của S như sau:

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

Ví dụ: Cho các tập hợp: T = {2; 3; 5}, S = {2; 3; 5; 7; 9}, M = {2; 3; 4; 5}.

- Tập hợp T là tập con của tập hợp S (do mọi phần tử của T đều thuộc S).

- Tập hợp M không là tập hợp con của tập hợp S (do có phần tử 4 thuộc M nhưng không thuộc S).

6.3. Hai tập hợp bằng nhau

- Hai tập hợp S và T được gọi là hai tập hợp bằng nhau nếu mỗi phần tử của T cũng là phần tử của tập hợp S và ngược lại. Kí hiệu là S = T.

- Nếu S T và T S thì S = T.

Ví dụ: Cho 2 tập hợp: S = {n | n là bội chung của 2 và 3; n < 20} và T = {n | n là bội của 6; n < 20}.

Ta có: S = {0; 6; 12; 18};

T = {0; 6; 12; 18}.

Vậy S = T.

7. Các tập hợp số

7.1. Mối quan hệ giữa các tập hợp số

- Tập hợp các số tự nhiên ℕ = {0; 1; 2; 3; 4; ....}.

- Tập hợp các số nguyên ℤ gồm các số tự nhiên và số nguyên âm:

ℤ = {...; – 3; – 2; – 1; 0; 1; 2; 3}.

- Tập hợp các số hữu tỉ ℚ gồm các số được viết dưới dạng phân số ab , với a, b ℤ, b ≠ 0.

Số hữu tỉ còn được biểu diễn dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn.

- Tập hợp các số thực ℝ gồm các số hữu tỉ và các số vô tỉ. Số vô tỉ là các số thập phân vô hạn không tuần hoàn.

- Mối quan hệ giữa các tập hợp số: ℕ ℝ.

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

Ví dụ: Cho tập hợp B = {– 1; 2; 4; 10}.

- Tập hợp B chứa số – 1 không phải là số tự nhiên nên B không là tập con của ℕ.

- Tập hợp B gồm các số nguyên: – 1; 2; 4; 10 nên B là tập con của ℤ.

- Các số nguyên cũng là các số hữu tỉ và cũng là các số thực, nên B cũng là tập con của ℚ và ℝ.

7.2. Các tập con thường dùng của ℝ

- Một số tập con thường dùng của tập số thực ℝ:

+ Khoảng:

a;b=x|a<x<b

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

a;+=a|x>a

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

;b=x|x<b

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

;+

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

+ Đoạn

a;b=x|axb

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

+ Nửa khoảng

a;b=x|ax<b

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

a;b=x|a<xb

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

a;+=x|xa

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

;b=x|xb

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

- Kí hiệu + : Đọc là dương vô cực (hoặc dương vô cùng).

- Kí hiệu – : Đọc là âm vô cực (hoặc âm vô cùng).

- a, b gọi là các đầu mút của đoạn, khoảng hay nửa khoảng.

Ví dụ:

+ Ta có: 5 < x ≤ 10 thì ta viết x (5; 10].

+ Ta có: D = {x | x < 3} = (– ; 3).

8. Các phép toán trên tập hợp

8.1. Giao của hai tập hợp

Tập hợp gồm các phần tử thuộc cả hai tập hợp S và T gọi là giao của hai tập hợp S và T, kí hiệu là S T.

S ∩ T ={x | x S và x T}.

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

Ví dụ: Cho 2 tập hợp: A = {5; 7; 8} và B = {1; 2; 4; 5; 8}.

Giao của 2 tập hợp trên là tập hợp C = A B = {5; 8}.

8.2. Hợp của hai tập hợp

- Tập hợp gồm các phần tử thuộc tập hợp S hoặc thuộc tập hợp T gọi là hợp của hai tập hợp S và T, kí hiệu là S ∪ T.

S T = {x | x S hoặc x T}.

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

Ví dụ: Cho 2 tập hợp: S = {1; 2; 3; 5} và T = {2; 4; 6; 7}.

Tập hợp là hợp của hai tập hợp trên là K = S T = {1; 2; 3; 4; 5; 6; 7}.

8.3. Hiệu của hai tập hợp

- Hiệu của hai tập hợp S và T là tập hợp gồm các phần tử thuộc S nhưng không thuộc T, kí hiệu là S \ T.

S \ T = {x | x S và x T}.

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

- Nếu T S thì S \ T được gọi là phần bù của T trong S, kí hiệu CST.

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

Chú ý: .CsS=

Ví dụ: Cho các tập hợp: S = {1; 2; 3; 4; 5; 7; 8}; T = {4; 5; 6; 7; 8; 9}; X = {x | x là các số nguyên dương nhỏ hơn 9}.

Ta có: S \ T = {1; 2; 3};

T \ S = {6; 9}.

Lại có: X = {1; 2; 3; 4; 5; 6; 7; 8}

Vì mọi phần tử của tập S đều thuộc tập X nên S X.

Phần bù của S trong X là X \ S = CXS = {6}.

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài 3: Bất phương trình bậc nhất hai ẩn

Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bài ôn tập chương 2

Bài 5: Giá trị lượng giác của một góc từ 0 độ đến 180 độ

Bài 6: Hệ thức lượng trong tam giác

Xem thêm tài liệu Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Lý thuyết Ôn tập chương 1

Trắc nghiệm Bài ôn tập cuối chương 1

1 9,870 25/09/2024
Tải về


Xem thêm các chương trình khác: