Giải Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
Với giải bài tập Toán lớp 10 Bài tập cuối chương 2 sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài tập cuối chương 2.
Giải bài tập Toán 10 Bài tập cuối chương 2
A. Trắc nghiệm
Bài 2.7 trang 31 Toán 10 Tập 1: Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Lời giải
Đáp án đúng là A
Vì x + y > 3 có dạng ax + by > c với a = 1; b = 1; c = 3.
Bài 2.8 trang 31 Toán 10 Tập 1: Cho bất phương trình 2x + y > 3. Khẳng định nào dưới đây là đúng?
A. Bất phương trình đã cho có nghiệm duy nhất.
B. Bất phương trình đã cho vô nghiệm.
C. Bất phương trình đã cho có vô số nghiệm.
D. Bất phương trình đã cho có tập nghiệm là .
Lời giải
Đáp án đúng là C
Có vô số cặp số (x0; y0) thỏa mãn 2x0 + y0 > 3.
Do đó bất phương trình 2x + y > 3 có vô số nghiệm
Lời giải
Đáp án đúng là D
Ta vẽ đường thẳng x – y = 3
Ta có: 0 – 0 = 0 < 3. Do đó, miền nghiệm của bất phương trình x – y < 3 là nửa mặt phẳng có bờ là đường thẳng x – y = 3 có chứa điểm O(0; 0) không kể biên.
Lời giải
Đáp án đúng là A
Vì cả hai bất phương trình của hệ ở đáp án A đều là bất phương trình bậc nhất hai ẩn.
Lời giải
Đáp án đúng là D
Thay tọa độ từng điểm và hệ bất phương trình ta thấy đáp án D đúng
B. Tự luận
Bài 2.12 trang 32 Toán 10 Tập 1: Biểu diễn miền nghiệm của bất phương trình trên mặt phẳng tọa độ.
Lời giải
Vẽ đường thẳng d: – x + 5y = 2.
Ta có: -0 + 5.0 = 0 < 2.
Do đó, miền nghiệm của bất phương trình -x + 5y 2 là nửa mặt phẳng có bờ là đường thẳng –x + 5y = 2, tính cả biên và không chứa điểm O(0; 0) (miền không bị gạch).
Lời giải
+) Xác định miền nghiệm D1 của bất phương trình x + y < 1.
- Ta vẽ đường thẳng d: x + y = 1.
- Ta có: 0 + 0 = 0 < 1.
Do đó miền nghiệm D1 của bất phương trình x + y < 1 là nửa mặt phẳng có bờ là đường thẳng d (không kể đường thẳng d) chứa gốc tọa độ O(0; 0).
+) Xác định miền nghiệm D2 của bất phương trình 2x – y ≥ 3.
- Vẽ đường thẳng d’: 2x – y = 3.
- Ta có: 2.0 – 0 = 0 < 3.
Do đó miền nghiệm D2 của bất phương trình 2x – y ≥ 3 là nửa mặt phẳng có bờ là đường thẳng d’ (kể cả đường thẳng d’) và không chứa gốc tọa độ O(0; 0).
Vậy miền nghiệm của hệ bất phương trình đã cho là phần không bị gạch chéo trong hình vẽ, không kể biên là đường thẳng d và kể cả biên là đường thẳng d’.
Lời giải
+) Ta biểu diễn miền nghiệm của hệ bất phương trình
+ Xác định miền nghiệm của bất phương trình y – 2x ≤ 2.
- Vẽ đường thẳng y – 2x = 2
- Ta có: 0 – 2.0 = 0 < 2.
Do đó, miền nghiệm của bất phương trình y – 2x ≤ 2 là nửa mặt phẳng có bờ là đường thẳng y – 2x = 2 (tính cả đường thẳng đó) và chứa điểm O(0; 0).
+ Xác định miền nghiệm của bất phương trình y ≤ 4.
- Vẽ đường thẳng y = 4.
- Ta có 3 ≤ 4
Do đó, miền nghiệm của bất phương trình y ≤ 4 là nửa mặt phẳng có bờ là đường thẳng y = 4 (tính cả đường thẳng đó) và chứa điểm (0; 3).
+ Xác định miền nghiệm của bất phương trình x ≤ 5.
- Vẽ đường thẳng x = 5.
- Ta có 3 ≤ 5
Do đó, miền nghiệm của bất phương trình x ≤ 5 là nửa mặt phẳng có bờ là đường thẳng x = 5 (tính cả đường thẳng đó) và chứa điểm (3; 0).
+ Xác định miền nghiệm của bất phương trình x + y ≤ – 1.
- Vẽ đường thẳng x + y = -1
- Ta có: 0 + 0 = 0 > -1.
Do đó, miền nghiệm của bất phương trình x + y ≥ -1 là nửa mặt phẳng có bờ là đường thẳng x + y = -1 (tính cả đường thẳng đó) và không chứa điểm O(0; 0).
Vậy miền nghiệm của hệ bất phương trình đã cho là miền tứ giác ABCD (miền tô màu vàng) với tọa độ các đỉnh A(1; 4); B(5; 4); C(5; – 6); D(– 1; 0)
Giá trị lớn nhất và giá trị nhỏ nhất của F(x; y) = – x – y được xác định với (x; y) là tọa độ của một trong bốn đỉnh A; B; C; D.
F(1; 4) = – 1 – 4 = – 5
F(5; 4) = – 5 – 4 = – 9
F(5; – 6) = – 5 – (– 6) = 1
F(– 1; 0) = – (– 1) – 0 = 1
Vậy giá trị lớn nhất của biểu thức F là 1 tại (x;y) = (-1;0) hoặc (x;y) = (5;-6) và giá trị nhỏ nhất của biểu thức F là -9 tại (x;y) = (5;4)
Lời giải
Gọi số tiền bác An đầu tư cho trái phiếu chính phủ, trái phiếu ngân hàng lần lượt là x, y (triệu đồng) (0 ≤ x, y ≤ 1 200).
Khi đó bác An đầu tư cho trái phiếu doanh nghiệp là 1 200 – x – y (triệu đồng)
Vì lí do giảm thuế, bác An muốn số tiền đầu tư trái phiếu chính phủ gấp ít nhất 3 lần số tiền đầu tư trái phiếu ngân hàng nên ta có: x ≥ 3y hay x – 3y ≥ 0.
Để giảm thiểu rủi ro, bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp nên ta có: 1 200 – x – y ≤ 200 hay x + y ≥ 1 000.
Từ đó ta có hệ bất phương trình: .
Miền nghiệm của hệ bất phương trình là miền tứ giác ABCD với tọa độ các điểm
A(1 000;0), B(750;250), C(1 200;400), D(1 200;0).
Lợi nhuận bác An thu được là: F(x;y) = 7%x + 8%y + 12%(1200 – x – y) = 144 – 0,05x – 0,04y (triệu đồng)
Tính giá trị của F(x;y) tại các điểm A, B, C, D, ta được:
F(1 000;0) = 144 – 0,05.1 000 – 0,04.0 = 94;
F(750;250) = 144 – 0,05.750 – 0,04.250 = 96,5;
F(1 200;400) = 144 – 0,05.1 200 – 0,04.400 = 68;
F(1 200;0) = 144 – 0,05.1 200 – 0,04.0 = 84;
Suy ra F(x; y) lớn nhất bằng 96,5 khi x = 750, y = 250.
Vậy bác An nên đầu tư 750 triệu đồng vào trái phiếu chính phủ, 250 triệu đồng vào trái phiếu ngân hàng và 200 triệu đồng vào trái phiếu doanh nghiệp để lợi nhuận thu được là lớn nhất.
Lời giải
Gọi x (giây) là thời lượng quảng cáo trong một tháng công ty đặt trên đài truyền hình và y (giây) là thời lượng quảng cáo trong một tháng công ty đặt trên đài phát thanh. (0 ≤ x ≤ 360, 0 ≤ y ≤ 900).
Chi phí công ty chi trả cho quảng cáo trong một tháng là: 400x + 80y (nghìn đồng)
Vì công ty dự định chi tối đa 160 triệu đồng cho quảng cáo một sản phẩm mới nên ta có:
400x + 80y ≤ 160 000 hay 5x + y ≤ 2 000.
Khi đó ta có hệ bất phương trình:
Miền nghiệm của hệ bất phương trình là ngũ giác OABCD với tọa độ các điểm là O(0;0), A(0;900), B(220;900), C(360;200), D(360;0).
Nếu coi hiệu quả khi quảng cáo 1 giây trên đài phát thanh là 1 (đơn vị) thì hiệu quả khi quảng cáo 1 giây trên đài truyền hình là 8 (đơn vị). Khi đó hiệu quả quảng cáo x (giây) trên đài truyền hình và y (giây) trên đài phát thanh là F(x; y) = 8x + y.
Tính giá trị F(x; y) tại các điểm O, A, B, C, D, ta có:
Ta có: F(0; 0) = 8.0 + 0 = 0;
F(0; 900) = 8.0 + 900 = 900;
F(220; 900) = 8.220 + 900 = 2 660;
F(360; 200) = 8.360 + 200 = 3 080.
F(360; 0) = 8.360 + 0 = 2 880.
Suy ra F(x; y) đạt giá trị lớn nhất bằng 3 080 tại x = 360, y = 200.
Vậy công ty cần đặt thời gian quảng cáo 200 giây trên đài phát thanh và 360 giây trên đài truyền hình để đạt hiệu quả cao nhất.
Lý thuyết Bài tập cuối chương 2
1. Bất phương trình bậc nhất hai ẩn
- Bất phương trình bậc nhất hai ẩn x, y có dạng tổng quát là:
Trong đó a, b, c là những số thực đã cho, a và b không đồng thời bằng 0, x và y là các ẩn số.
- Cặp số được gọi là một nghiệm của bất phương trình bậc nhất hai ẩn nếu bất đẳng thức đúng.
Nhận xét: Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Ví dụ:
là bất phương trình bậc nhất hai ẩn.
không là bất phương trình bậc nhất hai ẩn.
Ví dụ về nghiệm của bất phương trình 5x + 2y < 4:
Vì 5.(-1) + 2(-2) = -9 < 4 nên cặp số (-1; -2) là nghiệm của bất phương trình.
Vì 5.0 + 2.0 = 0 < 4 nên cặp số (0; 0) là nghiệm của bất phương trình.
Vì 5.(-1) + 2.2 = -1 < 4 nên cặp số (-1;2) là nghiệm của bất phương trình.
Ta có thể tìm thêm được nhiều cặp số thỏa mãn bất phương trình đã cho. Do đó bất phương trình bậc nhất hai ẩn 5x + 2y < 4 có các cặp nghiệm là (-1; -2); (0;0); (-1; 2) … hay bất phương trình này có vô số nghiệm.
2. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng tọa độ
- Trong mặt phẳng tọa độ Oxy, tập hợp các điểm có tọa độ là nghiệm của bất phương trình được gọi là miền nghiệm của bất phương trình đó.
- Người ta chứng minh được rằng đường thẳng d có phương trình chia mặt phẳng tọa độ Oxy thành 2 nửa mặt phẳng bờ d:
+ Một nửa mặt phẳng (không kể bờ d) gồm các điểm có tọa độ thỏa mãn ;
+ Một nửa mặt phẳng (không kể bờ d) gồm các điểm có tọa độ thỏa mãn ;
Bờ d gồm các điểm có tọa độ thỏa mãn .
- Cách biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn :
+ Vẽ đường thẳng trên mặt phẳng tọa độ Oxy.
+ Lấy một điểm không thuộc d.
+ Tính và so sánh với c.
+ Nếu thì nửa mặt phẳng bờ d chứa là miền nghiệm của bất phương trình. Nếu thì nửa mặt phẳng bờ d không chứa là miền nghiệm của bất phương trình.
Chú ý: Miền nghiệm của bất phương trình là miền nghiệm của bất phương trình bỏ đi đường thẳng và biểu diễn đường thẳng bằng nét đứt.
Ví dụ: Biểu diễn miền nghiệm của bất phương trình trên mặt phẳng tọa độ:
Bước 1: Vẽ đường thẳng trên mặt phẳng tọa độ Oxy.
Bước 2: Lấy điểm không thuộc d và thay x = 0 và y = 1 vào biểu thức ta được là mệnh đề đúng.
Do đó miền nghiệm của bất phương trình là nửa mặt phẳng bờ d chứa điểm (miền không bị gạch)
3. Hệ bất phương trình bậc nhất hai ẩn
- Hệ bất phương trình bậc nhất hai ẩn là một hệ gồm hai hay nhiều bất phương trình bậc nhất hai ẩn.
- Cặp số là nghiệm của một hệ bất phương trình bậc nhất hai ẩn khi đồng thời là nghiệm của tất cả các bất phương trình trong hệ đó.
Ví dụ:
là một hệ bất phương trình hai ẩn gồm 2 bất phương trình và .
không phải là hệ bất phương trình bậc nhất hai ẩn bởi là bất phương trình bậc hai 2 ẩn.
- Cho hệ bất phương trình hai ẩn .
Cặp (x; y) = (10; 2) là nghiệm của bất phương trình x + y > 9 và cũng là nghiệm của bất phương trình x – y < 9. Nên cặp (x; y) = (10; 2) là nghiệm của hệ bất phương trình trên.
4. Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng tọa độ
- Trong mặt phẳng tọa độ, tập hợp các điểm có tọa độ là nghiệm của hệ bất phương trình bậc nhất hai ẩn là miền nghiệm của hệ bất phương trình đó.
- Miền nghiệm của hệ là giao các miền nghiệm của các bất phương trình trong hệ.
- Cách xác định miền nghiệm của một hệ bất phương trình bậc nhất hai ẩn:
+ Trên cùng một mặt phẳng tọa độ, xác định miền nghiệm của mỗi bất phương trình bậc nhất hai ẩn trong hệ và gạch bỏ miền còn lại.
+ Miền không bị gạch là miền nghiệm của hệ bất phương trình đã cho.
Ví dụ: Xác định miền nghiệm của hệ bất phương trình bậc nhất hai ẩn::
Bước 1: Xác định miền nghiệm D1 của bất phương trình x ≥ 0 và gạch bỏ phần miền còn lại.
- Đường thẳng x = 0 là trục tọa độ Oy.
- Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy nằm bên phải trục Oy.
Bước 2: Tương tự, miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox nằm bên trên trục Ox.
Bước 3: Miền nghiệm D3 của bất phương trình x + y ≤ 150:
- Vẽ đường thẳng d: x + y = 150.
- Vì 0 + 0 ≤ 150 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x + y ≤ 150.
Do đó, miền nghiệm D3 của bất phương trình x + y ≤ 150 là nửa mặt phẳng bờ d chứa gốc tọa độ O.
Từ đó ta có miền nghiệm tô màu xanh chính là giao miền nghiệm của các bất phương trình trong hệ.
5. Ứng dụng của hệ bất phương trình bậc nhất hai ẩn
Nhận xét: Tổng quát, người ta chứng minh được rằng giá trị lớn nhất (hay nhỏ nhất) của biểu thức , với là tọa độ các điểm thuộc miền đa giác , tức là các điểm nằm bên trong hay nằm trên các cạnh của đa giác, đạt được tại một trong các đỉnh của đa giác đó.
Ví dụ: Cho hệ bất phương trình bậc nhất hai ẩn: và . Tìm giá trị lớn nhất của .
Hướng dẫn giải:
Bước 1: Xác định miền nghiệm của hệ bất phương trình trên.
- Xác định miền nghiệm D1 của bất phương trình x ≥ 0.
- Đường thẳng x = 0 là trục tọa độ Oy.
- Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy nằm bên phải trục Oy.
- Tương tự, miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox nằm bên trên trục Ox.
- Miền nghiệm D3 của bất phương trình x + y ≤ 100:
+ Vẽ đường thẳng d1: x + y = 100.
+ Vì 0 + 0 ≤ 100 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x + y ≤ 100.
Do đó, miền nghiệm D3 của bất phương trình x + y ≤ 100 là nửa mặt phẳng bờ d1 chứa gốc tọa độ O.
- Miền nghiệm D4 của bất phương trình 2x + y ≤ 120:
+ Vẽ đường thẳng d2: 2x + y = 120.
+ Vì 2. 0 + 0 ≤ 120 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình 2x + y ≤ 120.
Do đó, miền nghiệm D4 của bất phương trình 2x + y ≤ 120 là nửa mặt phẳng bờ d2 chứa gốc tọa độ O.
Từ đó ta có miền nghiệm tô màu xanh chính là giao miền nghiệm của các bất phương trình trong hệ.
Miền nghiệm là miền tứ giác OABC với O(0;0), A(0;100), B(20;80) và C(60;0).
Bước 2: Tính giá trị của biểu thức F tại các đỉnh của tứ giác
F(O) = 0; F(A) = 200; F(B) = 230; F(C) = 210.
Bước 3: So sánh các giá trị thu được ở Bước 2, kết luận giá trị lớn nhất của là 230.
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 5: Giá trị lượng giác của một góc từ 0 độ đến 180 độ
Bài 6: Hệ thức lượng trong tam giác
Bài 8: Tổng và hiệu của hai vectơ
Xem thêm tài liệu Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức