Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu

Lời giải Vận dụng trang 30 Toán 10 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 10 Tập 1.

1 6,877 03/11/2022


Giải Toán lớp 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Vận dụng trang 30 Toán 10 tập 1: Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong một tháng cửa hàng cần nhập số máy tính loại A là x và số máy tính loại B là y.

a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó.

b) Gọi F (triệu đồng) là lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B. Hãy biểu diễn F theo x và y.

c) Tìm số lượng máy tính mỗi loại cửa hàng cần nhập về trong tháng đó để lợi nhuận thu được là lớn nhất.

Lời giải

a) Số máy tính loại A cửa hàng cần nhập trong một tháng là x (máy), số máy tính loại B cửa hàng cần nhập trong một tháng là y (máy) x,y0.

Do tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy: x + y ≤ 250

Vì mỗi chiếc máy tính loại A có giá 10 triệu và mỗi máy tính loại B có giá 20 triệu nên tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)

Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có: 10x + 20y  ≤ 4 000 hay x + 2y ≤ 400.

Ta có hệ bất phương trình: x0y0x+y250x+2y400

Ta xác định miền nghiệm của hệ bất phương trình trên:

+) Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0).

+) Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0;1).

+) Xác định miền nghiệm D3 của bất phương trình x + y ≤ 250.

- Vẽ đường thẳng d: x + y = 250.

- Vì 0 + 0 = 0 < 250 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + y ≤ 250

Do đó miền nghiệm D3 của bất phương trình x + y ≤ 250 là nửa mặt phẳng bờ d chứa gốc tọa độ.

+) Xác định miền nghiệm D4 của bất phương trình x + 2y ≤ 400.

- Vẽ đường thẳng d’: x + 2y = 400.

- Vì 0 + 2 . 0 = 0 < 400 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + 2y < 400

Do đó miền nghiệm D4 của bất phương trình x + 2y < 400 là nửa mặt phẳng bờ d’ chứa gốc tọa độ.

Miền nghiệm của hệ bất phương trình trên là tứ giác OABC với tọa độ các đỉnh là O(0;0), A(0; 200), B(100; 150), C(250; 0)

Giải Toán 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn - Kết nối tri thức (ảnh 1)

b) Lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B là: F(x;y) = 2,5x + 4y (triệu đồng).

Vậy F(x; y) = 2,5x + 4y.

c) Bài toán chuyển về tìm giá trị lớn nhất của F(x;y) với (x;y) thuộc miền nghiệm của hệ bất phương trình x0y0x+y250x+2y400.

Người ta đã chứng minh được, giá trị F(x; y) lớn nhất tại (x; y) là tọa độ của một trong bốn đỉnh O; A; B; C.

Tại O(0; 0), ta có: F(0; 0) = 2,5 . 0 + 4 . 0 = 0;

Tại A(0; 200), ta có: F(0; 200) = 2,5 . 0 + 4 . 200 = 800;

Tại B(100; 150), ta có: F(100; 150) = 2,5 . 100 + 4 . 150 = 850;

Tại B(250; 0), ta có: F(250; 0) = 2,5 . 250 + 4 . 0 = 625.

Do đó F(x; y) lớn nhất bằng 850 tại x = 100 và y = 150.

Vậy cửa hàng cần nhập 100 máy loại A, 150 máy loại B để cửa hàng thu được lợi nhuận lớn nhất là 850 triệu đồng.

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác: 

Mở đầu trang 26 Toán 10 tập 1: Trong năm nay, một cửa hàng điện lạnh dự định kinh doanh hai loại máy điều hòa...

HĐ 1 trang 26 Toán 10 tập 1: Trong tình huống mở đầu, gọi x và y lần lượt là số máy điều hòa hai chiều...

Luyện tập 1 trang 27 Toán 10 tập 1: Trong tình huống mở đầu, gọi x và y lần lượt là số máy điều hòa hai chiều...

HĐ 2 trang 27 Toán 10 tập 1: Cho đường thẳng d: x + y = 150 trên mặt phẳng tọa độ Oxy...

Luyện tập 2 trang 28 Toán 10 tập 1: Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn...

HĐ 3 trang 28 Toán 10 tập 1: Xét biểu thức F(x; y) = 2x + 3y với (x; y) thuộc miền tam giác OAB ở HĐ2...

Bài 2.4 trang 30 Toán 10 tập 1: Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất...

Bài 2.5 trang 30 Toán 10 tập 1: Biểu diễn miền nghiệm của mỗi hệ bất phương trình sau trên mặt phẳng tọa độ...

Bài 2.6 trang 30 Toán 10 tập 1: Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị...

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài tập cuối chương 2

Bài 5: Giá trị lượng giác của một góc từ 0 độ đến 180 độ

Bài 6: Hệ thức lượng trong tam giác

Bài tập cuối chương 3

Bài 7: Các khái niệm mở đầu

Lý thuyết Bài 4. Hệ bất phương trình bậc nhất hai ẩn

Trắc nghiệm Bài 4: Hệ bất phương trình bậc nhất hai ẩn

1 6,877 03/11/2022


Xem thêm các chương trình khác: