Giải SBT Toán 10 trang 92 Tập 1 Cánh diều

Với Giải SBT Toán 10 trang 92 Tập 1 trong Bài 4: Tổng và hiệu của hai vectơ Toán lớp 10 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 92.

1 3,763 23/09/2022


Giải SBT Toán 10 trang 92 Tập 1 Cánh diều

Bài 32 trang 92 SBT Toán 10 Tập 1: Cho ba điểm M, N, P phân biệt. Phát biểu nào sau đây là đúng?

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lời giải:

Đáp án đúng là C

Ta có: MNNP=MN+PN=MN+MK=MHMP (H, K là điểm thỏa mãn MKHN là hình bình hành). Do đó A sai.

Ta có: MN+NP=NM+NP=NTMP(T là điểm MNPT là hình bình hành). Do đó B sai

Ta có: MN+NP=MP (quy tắc ba điểm). Do đó C đúng.

Ta có: MN+NP=MPMP. Do đó D sai.

Bài 33 trang 92 SBT Toán 10 Tập 1: Cho tứ giác ABCD là hình bình hành. Khẳng định nào sau đây đúng?

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lời giải:

Đáp án đúng là A

Ta có: BA+DA=BA+CB=CB+BA=CA. Do đó A đúng.

Ta có: AB+BC=ACAD. Do đó B sai.

Ta có: AB+AD=ACCA. Do đó C sai.

Ta có: AB+BC=ACAC. Do đó D sai.

Bài 34 trang 92 SBT Toán 10 Tập 1: Cho các điểm A, B, O. Khẳng định nào sau đây đúng?

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lời giải:

Đáp án đúng là B

Cho các điểm A, B, O. Khẳng định nào sau đây đúng?

Ta có:  OAOB=OA+BO=BO+OA=BAAB. Do đó A sai.

Ta có: OBOA=OB+AO=AO+OB=AB. Do đó B đúng.

Ta có: OA+OB=OCAB (C là điểm thỏa mãn OBCA là hình bình hành). Do đó C sai.

Ta có: OB+OA=OCAB(C là điểm thỏa mãn OBCA là hình bình hành). Do đó D sai.

Bài 35 trang 92 SBT Toán 10 Tập 1: Cho ba điểm A, B, M phân biệt. Điều kiện cần và đủ để M là trung điểm của đoạn thẳng AB là:

A. MA=MB.

B. MA=MB.

C. MA,MB ngược hướng.

D. MA+MB=0.

Lời giải:

Đáp án đúng là D

M là trung điểm của đoạn thẳng AB thì MA = MB và MA,MB ngược hướng.

MA=MB hay MA+MB=0.

Vậy điều kiện đủ đề M là trung điểm của đoạn thẳng AB là MA+MB=0.

Bài 36 trang 92 SBT Toán 10 Tập 1: Cho tam giác ABC. Điều kiện cần và đủ để G là trọng tâm của tam giác ABC là:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lời giải:

Đáp án đúng là B

Điều kiện cần và đủ để G là trọng tâm của tam giác ABC là GA+GB+GC=0

GB+GC=GA

GB+GC=AG

Bài 37 trang 92 SBT Toán 10 Tập 1: Cho tứ giác ABCD, O là trung điểm của AB. Chứng minh: OC+OD=AC+BD.

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Ta có: 

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Bài 38 trang 92 SBT Toán 10 Tập 1: Cho tam giác ABC vuông tại A, AB = 4a, AC = 5a. Tính:

a) ABAC;

b) AB+AC.

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

a) Xét tam giác ABC vuông tại A, có:

BC2 = AB2 + AC2 (định lí pythagoras)

BC2 = (4a)2 + (5a)2 = 41a2

BC = 41a.

Ta có:

ABAC=AB+CA=CA+AB=CB

ABAC=CB=41a.

Vậy ABAC=41a.

b) Lấy điểm D là điểm thỏa mãn ABDC là hình chữ nhật nên AD = BC (tính chất hình hình chữ nhật).

Ta có: AB+AC=AD (quy tắc hình bình hành)

AB+AC=AD=CB=41a.

Vậy AB+AC=41a.

Bài 39 trang 92 SBT Toán 10 Tập 1: Cho tam giác đều ABC cạnh a. Tính:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lời giải:

a) Ta có: AB+BC=AC (quy tắc 3 điểm)

  AB+BC=AC=AC=a

Vậy AB+BC=a.

b) Ta có: 

ABAC=AB+CA=CA+AB=CB

  ABAC=CB=CB=a.

Vậy ABAC=a.

c) Gọi D là điểm thỏa mãn ABDC là hình bình hành, M là trung điểm của BC.

Khi đó: AB+AC=AD

AB+AC=AD.

Xét tam giác ABC, có AM là đường trung tuyến nên AM là đường cao

AM = a32

AD = 2AM = 2.a32=a3.

AB+AC=AD=a3.

Vậy AB+AC=a3.

Bài 40 trang 92 SBT Toán 10 Tập 1: Cho tam giác ABC thỏa mãn AB+AC=ABAC. Chứng minh tam giác ABC vuông tại A.

Lời giải:

Gọi D là điểm thỏa mãn ABDC là hình bình hành.

Khi đó, ta có: AB+AC=AD  

AB+AC=AD=AD

Ta lại có: ABAC=AB+CA=CB

ABAC=CB=CB

AB+AC=ABAC nên AD = CB.

Hình bình hành ABCD có AB = CB nên ABCD là hình chữ nhật. Do đó tam giác ABC vuông tại A.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Giải SBT Toán 10 trang 93 Tập 1

1 3,763 23/09/2022


Xem thêm các chương trình khác: