Cho tam giác nhọn ABC có các cạnh đôi một khác nhau. Gọi H, O lần lượt là

Lời giải Bài 46 trang 93 SBT Toán 10 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 717 05/12/2022


Giải SBT Toán 10 Cánh diều Bài 4: Tổng và hiệu của hai vectơ

Bài 46 trang 93 SBT Toán 10 Tập 1: Cho tam giác nhọn ABC có các cạnh đôi một khác nhau. Gọi H, O lần lượt là trực tâm và tâm đường tròn ngoại tiếp tam giác, D là điểm đối xứng với H qua O. Chứng minh rằng: HA+HB+HC=HD.

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Vẽ đường kính AE

Ta có: ACE^=90° nên AC EC

Mà BH EC

BH // AC (1)

Ta lại có:ABE^=90° và AB BE

Mà CH AB

BE // CH (2)

Từ (1) và (2) suy ra BHEC là hình bình hành

Xét tứ giác AHDE, có:

O là trung điểm của HD (gt)

O là trung điểm của AE

Do đó AHDE là hình bình hành

Khi đó, ta có:

HA+HB+HC=HA+HB+HC=HA+HE=HD.

1 717 05/12/2022


Xem thêm các chương trình khác: