Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD; P, Q lần lượt thuộc

Lời giải Bài 58 trang 118 SBT Toán 11 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 286 18/09/2023


Giải SBT Toán 11 Bài tập cuối chương 4

Bài 58 trang 118 SBT Toán 11Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD; P, Q lần lượt thuộc các cạnh CD, BC (P, Q không là trung điểm của CD, CB). Chứng minh rằng nếu M, N, P, Q cùng thuộc một mặt phẳng thì ba đường thẳng MQ, NP và AC cùng đi qua một điểm.

Lời giải:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD; P, Q lần lượt thuộc các cạnh CD, BC (P, Q không là trung điểm của CD, CB). Chứng minh rằng nếu M, N, P, Q cùng thuộc một mặt phẳng thì ba đường thẳng MQ, NP và AC cùng đi qua một điểm.  (ảnh 1)

Giả sử M, N, P, Q cùng thuộc một mặt phẳng.

Xét tam giác ABC, do Q không là trung điểm của BC nên đường thẳng MQ cắt đường thẳng AC tại điểm S.

Khi đó, S  (MNPQ) và S  (ACD). Do vậy S là một điểm chung của hai mặt phẳng (ACD) và (MNPQ). (1)

Do N  AD nên N  (ACD) và P  CD nên P  (ACD), suy ra NP  (ACD).

Mà NP  (MNPQ) nên NP là giao tuyến của hai mặt phẳng (ACD) và (MNPQ). (2)

Từ (1) và (2) suy ra S  NP.

Vậy ba đường thẳng MQ, NP và AC cùng đi qua điểm S.

1 286 18/09/2023


Xem thêm các chương trình khác: