Cho hình thang ABCD có AB // CD, hai đường chéo AC và BD cắt nhau tại O sao cho OA = OB; OC = OD

Lời giải Câu 3 trang 47 VTH Toán 8 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Vở thực hành Toán 8.

1 721 11/08/2023


Giải Vở thực hành Toán 8 Bài 11: Hình thang cân

Câu 3 trang 47 VTH Toán 8 Tập 1: Cho hình thang ABCD có AB // CD, hai đường chéo AC và BD cắt nhau tại O sao cho OA = OB; OC = OD (H.3.8).

Cho hình thang ABCD có AB song song CD, hai đường chéo AC và BD

Trong các khẳng định sau, khẳng định sai 

A. BC = AD.

B. ABCD là hình thang cân.

C. AC = BD.

D. Tam giác AOC cân tại O.

Lời giải:

Đáp án đúng là: D

Ta có: OA = OB; OC = OD suy ra OA + OC = OB + OD

Khi đó AC = BD nên ABCD là hình thang cân. Do đó B, C đúng.

ABCD là hình thang cân nên hai cạnh bên bằng nhau nên BD = AC. Do đó A đúng.

Vì A, O, C thẳng hàng nên D là khẳng định sai.

1 721 11/08/2023


Xem thêm các chương trình khác: