Giải Vở thực hành Toán 8 Bài 12 (Kết nối tri thức): Hình bình hành
Với giải Vở thực hành Toán 8 Bài 12: Hình bình hành sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong VTH Toán 8 Bài 12.
Giải VTH Toán 8 Bài 12: Hình bình hành - Kết nối tri thức
B – CÂU HỎI TRẮC NGHIỆM
Chọn phương án đúng trong mỗi câu sau:
Câu 1 trang 52 vở thực hành Toán 8 Tập 1: Hãy chọn câu sai.
A. Hình bình hành có hai đường chéo cắt nhau tại trung điểm mỗi đường.
B. Hình bình hành có hai góc đối bằng nhau.
C. Hình bình hành có các cạnh đối song song và bằng nhau.
D. Hình bình hành có hai đường chéo vuông góc với nhau.
Lời giải:
Đáp án đúng là: D
Theo tính chất của hình bình hành thì có các cạnh đối bằng nhau, các góc đối bằng nhau, hai đường chéo cắt nhau tại trung điểm mỗi đường.
Do đó câu sai là: Hình bình hành có hai đường chéo vuông góc với nhau.
Câu 2 trang 52 vở thực hành Toán 8 Tập 1: Điền cụm từ thích hợp vào chỗ trống.
c) Trong hình bình hành, hai góc kề ................. bất kì có ...................... bằng
e) Tứ giác có các góc ........................................... là một hình bình hành.
Lời giải:
a) Tứ giác có các cạnh đối bằng nhau là một hình bình hành.
b) Tứ giác có các cạnh đối song song và bằng nhau là một hình bình hành.
c) Trong hình bình hành, hai góc kề một cạnh bất kì có tổng số đo góc bằng
d) Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
e) Tứ giác có các góc đối bằng nhau là một hình bình hành.
Câu 3 trang 52 vở thực hành Toán 8 Tập 1: Cho hình bình hành ABCD có Khi đó:
Lời giải:
Đáp án đúng là: C
Hình bình hành ABCD có AB // DC, AB = CD nên B sai.
Ta có mà AB // DC, suy ra
Mà hình bình hành có hai góc đối bằng nhau nên
Vậy C là đáp án đúng.
C – BÀI TẬP
a) Hình thang có hai cạnh bên song song là hình bình hành.
b) Hình thang có hai cạnh bên bằng nhau là hình bình hành.
c) Tứ giác có hai cạnh đối nào cũng song song là hình bình hành.
Lời giải:
a) Đúng, vì tứ giác có các cạnh đối song song là hình bình hành (theo định nghĩa).
b) Sai, vì hình thang cân có hai cạnh bên bằng nhau mà không song song thì không phải là hình bình hành.
c) Đúng, vì tứ giác có các cặp cạnh đối song song và bằng nhau là hình bình hành (theo định nghĩa).
Lời giải:
Hình bình hành có các góc đối bằng nhau và các góc kề bù nhau nên
Lời giải:
a) Tứ giác ABCD là hình bình hành vì và
b) Tứ giác ABCD không là hình bình hành vì nếu nó là hình bình hành thì hai góc đối bằng nhau và khi đó tổng số đo bốn góc của tứ giác ABCD bé hơn
c) Do tổng số đo bốn góc của tứ giác ABCD bằng nên Khi đó, ABCD là hình bình hành vì các góc đối của nó bằng nhau.
Vậy ABCD là hình bình hành.
a) Hai tứ giác AEFD, AECF là những hình bình hành.
Lời giải:
(H.3.21). a) Do ABCD là hình bình hành nên AB // CD, AB = CD, từ đó AE // CF, AE = EB = DF = FC.
Do đó tứ giác AEFD là hình bình hành.
Tương tự, tứ giác AECF là hình bình hành vì có hai cạnh đối AE và CF song song và bằng nhau.
b) Vì AEFD là hình bình hành nên AD = EF.
Vì AECF là hình bình hành nên AF = EC.
Lời giải:
(H.3.22). ABCD là hình bình hành nên AO = CO, BO = DO.
Xét ∆OAM và ∆OCN có: (hai góc so le trong), (hai góc đối đỉnh), AO = CO nên ∆OAM = ∆OCN (g.c.g).
Suy ra OM = ON.
Ta có OM = ON, BO = DO nên tứ giác MBND có hai đường chéo MN, BD cắt nhau tại trung điểm mỗi đường nên MBND là hình bình hành.
a) Tứ giác BHCN là hình bình hành.
b) HN đi qua trung điểm I của đoạn thẳng BC.
Lời giải:
(H.3.23). Vì H là trực tâm của ∆ABC nên CH ⊥ AB, BH ⊥ AC.
Ta có CH ⊥ AB, NB ⊥ AB ⇒ CH // NB.
Tương tự BH // CN.
Từ đó, suy ra BHCN là hình bình hành.
b) Ta có BHCN là hình bình hành nên BC và HN cắt nhau tại trung điểm mỗi đường, do đó HN đi qua trung điểm I của đoạn thẳng BC.
Xem thêm Lời giải bài tập Vở thực hành Toán 8 Kết nối tri thức hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn 8 Kết nối tri thức (hay nhất)
- Văn mẫu lớp 8 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 8 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn lớp 8 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 8 - Kết nối tri thức
- Giải SBT Ngữ văn 8 – Kết nối tri thức
- Giải Vở thực hành Ngữ văn 8 Kết nối tri thức | VTH Ngữ văn 8 Tập 1, Tập 2
- Nội dung chính tác phẩm Ngữ văn lớp 8 – Kết nối tri thức
- Soạn văn 8 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 8 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 8 – Global success
- Giải sbt Tiếng Anh 8 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 8 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 8 Global success
- Giải sgk Khoa học tự nhiên 8 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 8 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 8 – Kết nối tri thức
- Giải vth Khoa học tự nhiên 8 – Kết nối tri thức
- Giải sgk Lịch sử 8 – Kết nối tri thức
- Lý thuyết Lịch sử 8 - Kết nối tri thức
- Giải sbt Lịch sử 8 – Kết nối tri thức
- Giải sgk Địa lí 8 – Kết nối tri thức
- Lý thuyết Địa lí 8 - Kết nối tri thức
- Giải sbt Địa lí 8 – Kết nối tri thức
- Giải VTH Địa lí 8 Kết nối tri thức | Vở thực hành Địa lí 8
- Giải sgk Giáo dục công dân 8 – Kết nối tri thức
- Lý thuyết Giáo dục công dân 8 – Kết nối tri thức
- Giải sbt Giáo dục công dân 8 – Kết nối tri thức
- Giải sgk Công nghệ 8 – Kết nối tri thức
- Lý thuyết Công nghệ 8 - Kết nối tri thức
- Giải sbt Công nghệ 8 – Kết nối tri thức
- Giải sgk Tin học 8 – Kết nối tri thức
- Lý thuyết Tin học 8 - Kết nối tri thức
- Giải sbt Tin học 8 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 8 – Kết nối tri thức