Hình thang cân ABCD (AB // CD, AB < CD) có các đường thẳng AD, BC cắt nhau tại I, các đường thẳng AC, BD

Lời giải Bài 4 trang 49 VTH Toán 8 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Vở thực hành Toán 8.

1 4,389 11/08/2023


Giải Vở thực hành Toán 8 Bài 11: Hình thang cân

Bài 4 trang 49 VTH Toán 8 Tập 1: Hình thang cân ABCD (AB // CD, AB < CD) có các đường thẳng AD, BC cắt nhau tại I, các đường thẳng AC, BD cắt nhau tại J. Chứng minh rằng đường thẳng IJ là đường trung trực của đoạn thẳng AB.

Lời giải:

Hình thang cân ABCD (AB song song CD, AB nhỏ hơn CD) có các đường thẳng AD

(H.3.12). Hình thang ABCD cân nên ta có DAB^=ABC^, AD = BC, AC = BD.

Suy ra A^1=180°DAB^=180°ABC^=B^1 nên tam giác IAB cân tại I, do đó IA = IB hay I cách đều đoạn thẳng AB.

Xét ∆ABD = ∆BAC có: AD = BC, AB chung, BD = AC.

Do đó ∆ABD = ∆BAC (c.c.c), suy ra A^2=B^2, nên tam giác JAB cân tại J, do đó JA = JB hay J cách đều đoạn thẳng AB.

Vậy I, J nằm trên đường trung trực của AB hay đường thẳng IJ là đường trung trực của đoạn AB.

1 4,389 11/08/2023


Xem thêm các chương trình khác: