Thực hành 2 trang 61 Toán 11 Tập 2 | Chân trời sáng tạo Giải Toán lớp 11

Lời giải Thực hành 2 trang 61 Toán 11 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 274 13/12/2023


Giải Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Thực hành 2 trang 61 Toán 11 Tập 2: Cho tứ diện OABC có OA vuông góc với mặt phẳng (OBC) và có A′, B′, C′ lần lượt là trung điểm của OA, OB, OC. Vẽ OH là đường cao của tam giác OBC. Chứng minh rằng:

a) OA ⊥ (A ′B′C′) ;

b) B′ C′ ⊥ (OAH ).

Thực hành 2 trang 61 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Xét tam giác OAB:

A′ là trung điểm OA

B′ là trung điểm AB

Nên A ′B′ là đường trung bình của ΔOAB.

Do đó A ′B′ // OB ⇒ A ′B′ // (OBC) (vì OB(OBC)

Tương tự: B′C′ là đường trung bình của ΔABC

Do đó B ′C′ // BC ⇒ B ′C′ // (OBC) (vì BC(OBC)

Ta có:

A' // OBC                 B'C' //OBC                 A',B'C'A'B'C'A'B'C' //OBC

Mà OA ⊥ (OBC)

Vậy OA ⊥ (A ′B′C′).

b) Ta có OA ⊥ (OBC) nên OA ⊥ BC

M à OH ⊥ BC (OH là đường cao của ΔOBC) , suy ra BC ⊥ (OAH)

Lại có: B′C′ // BC nên B ′C′ ⊥ (OAH).

1 274 13/12/2023


Xem thêm các chương trình khác: