Thực hành 1 trang 59 Toán 11 Tập 2 | Chân trời sáng tạo Giải Toán lớp 11

Lời giải Thực hành 1 trang 59 Toán 11 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 374 13/12/2023


Giải Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Thực hành 1 trang 59 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình vuông, O là giao điểm của AC và BD, SA vuông góc với mặt phẳng (ABCD). Gọi H, I, K lần luợt là hình chiếu vuông góc của điểm A trên các cạnh SB, SC, SD. Chứng minh rằng:

a) CB ⊥ (SAB) và CD ⊥ (SAD) ;

b) HK ⊥ AI .

Thực hành 1 trang 59 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Ta có: SA ⊥ (ABCD) nên A ⊥ BC

Mà ABCD là hình vuông nên AB ⊥ BC

Và AB ∩ SA = {A}

Do đó BC ⊥ (SAB)

Tương tự: SA ⊥ (ABCD) nên SA ⊥ CD

Mà ABCD là hình vuông nên AD ⊥ CD

Và AD ∩ SA = {A} .

Do đó CD ⊥ (SAD) .

b) Ta có:

CB(SAB)CBAHAHSBCBSB=BAH(SBC)AHSC     (1)

CD(SAD)CDAKAKSDCDSD=DAK(SDC)AKSC     (2)

Từ (1) và (2) ⇒ SC ⊥ (AHK) ⇒ SC ⊥ HK.(3)

Xét ΔSAB và ΔSAD có:

SA chung

AB = AD

SAB^=SAD^

Do đó ΔSAB = ΔSAD (c.g.c)

Suy ra SB = SD; ASB^=ASD^ (các cạnh và các góc tương ứng)

Xét tam giác SBD:

SB = SD

⇒ ΔSBD cân tại S.

Xét ΔSAH và ΔSAK có:

ASH^=ASK^ ; cạnh SA chung ; SHA^=SKA^

Do đó ΔSAH = ΔSAH (cạnh huyền – góc nhọn)

Suy ra SH = SK (các cạnh tương ứng)

Khi ΔSHK cân tại S nên SHK^=SKH^

Ta có: HSK^=BSD^=180°2HSK^=180°2BSD^

HSK^=BSD^ (hai góc ở vị trí so le trong)

HK // BDSABDSAHK (4)

Từ (3) và (4) suy ra HK ⊥ (SAC) ⇒ HK ⊥ AI .

1 374 13/12/2023


Xem thêm các chương trình khác: