Giải Toán 8 trang 22 Chân trời sáng tạo

Với giải bài tập Toán 8 trang 22 trong Bài 3: Hằng đẳng thức đáng nhớ  sách Chân trời sáng tạo  hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 8 trang 22.

1 11,498 21/04/2023


Giải Toán 8 trang 22

Vận dụng 4 trang 22 Toán 8 Tập 1Từ một khối lập phương có cạnh bằng 2x + 1, ta cắt bỏ một khối lập phương có cạnh bằng x + 1 (xem Hình 5). Tính thể tích phần còn lại, viết kết quả dưới dạng đa thức.

Vận dụng 4 trang 22 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Thể tích của khối lập phương có cạnh bằng 2x + 1 là: (2x + 1)3.

Thể tích của khối lập phương có cạnh bằng x + 1 là: (x + 1)3.

Cách 1: Thể tích phần còn lại là:

(2x + 1)3 – (x + 1)3

= (2x)3 + 3.(2x)2.1 + 3.2x.12 + 13 – (x3 + 3.x2.1 + 3.x.12 + 13)

= 8x3 + 12x2 + 6x + 1 – x3 – 3x2 – 3x – 1

= (8x3 –  x3) + (12x2 – 3x2) + (6x – 3x) + (1 – 1)

= 7x3 + 9x2 + 3x.

Cách 1: Thể tích phần còn lại là:

(2x + 1)3 – (x + 1)3

= [(2x + 1) – (x + 1)].[(2x + 1)2 + (2x + 1).(x + 1) + (x + 1)2]

= [2x + 1 – x – 1].[(2x)2 + 2.2x.1 + 12 + (2x.x + 2x.x + 1.x + 1.1) + x2 + 2.x.1 + 12]

= x.[4x2 + 4x + 1 + 2x2 + 3x + 1 + x2 + 2x + 1]

= x.[(4x2 + 2x2 + x2) + (4x + 3x + 2x) + (1 + 1 + 1)]

= x.[7x2 + 9x + 3]

= 7x3 + 9x2 + 3x.

Bài tập

Bài 1 trang 22 Toán 8 Tập 1Tính:

a) (3x + 4)2;

b) (5x – y)2;

c) xy12y2.

Lời giải:

a) (3x + 4)2

= (3x)2 + 2.3x.4 + 42

= 9x2 + 24x + 16.

b) (5x – y)2

= (5x)2 – 2.5x.y + y2

= 25x2 – 10xy + y2.

c) xy12y2

=xy22.xy.12y+12y2

=x2y2xy2+14y2.

Bài 2 trang 22 Toán 8 Tập 1Viết các biểu thức sau thành bình phương của một tổng hoặc một hiệu:

a) x2 + 2x + 1;

b) 9 – 24x + 16x2;

c) 4x2 + 14 + 2x.

Lời giải:

a) x2 + 2x + 1

= x2 + 2.x.1 + 12

= (x + 1)2.

b) 9 – 24x + 16x2

= 32 – 2.3.4x + (4x)2

= (3 – 4x)2.

Ta cũng có thể viết như sau:

9 – 24x + 16x2

= 16x2 – 24x + 9

= (4x)2 – 2.4x.3 + 32

= (4x – 3)2.

c) 4x2+14+2x

=4x2+2x+14

=2x2+2.2x.12+122

=2x+122.

Bài 3 trang 22 Toán 8 Tập 1: Viết các biểu thức sau thành đa thức:

a) (3x – 5)(3x + 5);

b) (x – 2y)(x + 2y);

c) x12yx+12y.

Lời giải:

a) (3x – 5)(3x + 5)

= (3x)2 – 52

= 9x2 – 25.

b) (x – 2y)(x + 2y)

= x2 – (2y)2

= x2 – 4y2.

c) x12yx+12y

=x212y2

=x214y2.

Bài 4 trang 22 Toán 8 Tập 1:

a) Viết biểu thức tính diện tích của hình vuông có cạnh bằng 2x + 3 dưới dạng đa thức.

b) Viết biểu thức tính thể tích của khối lập phương có cạnh bằng 3x − 2 dưới dạng đa thức.

Lời giải:

a) Biểu thức tính diện tích của hình vuông có cạnh bằng 2x + 3 là:

(2x + 3)2 = (2x)2 + 2.2x.3 + 32 = 4x2 + 12x + 9.

b) Biểu thức tính thể tích của khối lập phương có cạnh bằng 3x − 2 là:

(3x – 2)3 = (3x)3 – 3.(3x)2.2 + 3.3x.22 – 23

               = 27x3 – 54x2 + 36x – 8.

Bài 5 trang 22 Toán 8 Tập 1Tính nhanh:

a) 38 . 42;

b) 1022;

c) 1982;

d) 752 – 252.

Lời giải:

a) 38 . 42 = (40 – 2).(40 + 2) = 402 – 22 = 1 600 – 4 = 1 596.

b) 1022 = (100 + 2)2 = 1002 + 2.100.2 + 22 = 10 000 + 400 + 4 = 10 404.

c) 1982 = (200 – 2)2 = 2002 – 2.200.2 + 22 = 40 000 – 800 + 4 = 39 204.

d) 752 – 252 = (75 + 25).(75 – 25) = 100 . 50 = 5 000.

Bài 6 trang 22 Toán 8 Tập 1Viết các biểu thức sau thành đa thức:

a) (2x – 3)3;

b) (a + 3b)3;

c) (xy –1)3.

Lời giải:

a) (2x – 3)3

= (2x)3 – 3.(2x)2.3 + 3.2x.32 – 33

= 8x3 – 36x2 + 54x – 8.

b) (a + 3b)3

= a3 + 3.a2.3b + 3.a.(3b)2 + (3b)3

= a3 + 9a2b + 27ab2 + 27b3.

c) (xy –1)3

= (xy)3 – 3.(xy)2.1 + 3.xy.12 – 13

= x3y3 – 3x2y2 + 3xy – 1.

Bài 7 trang 22 Toán 8 Tập 1Viết các biểu thức sau thành đa thức:

a) (a – 5)(a2 + 5a + 25);

b) (x + 2y)(x2 – 2xy + 4y2).

Lời giải:

a) (a – 5)(a2 + 5a + 25)

= (a – 5)(a2 + a.5 + 52)

= a3 – 53

= a3 – 125.

b) (x + 2y)(x2 – 2xy + 4y2)

= (x + 2y).[x2 – x.2y + (2y)2]

= x3 + (2y)3

= x3 + 8y3.

Bài 8 trang 22 Toán 8 Tập 1Viết các biểu thức sau thành đa thức:

a) (a – 1)(a + 1)(a2 + 1);

b) (xy + 1)2 – (xy – 1)2.

Lời giải:

a) (a – 1)(a + 1)(a2 + 1)

= (a2 – 1)(a2 + 1)

= (a2)2 – 12

= a4 – 1.

b) (xy + 1)2 – (xy – 1)2

= [(xy + 1) + (xy – 1)].[(xy + 1) – (xy – 1)]

= [xy + 1 + xy – 1].[xy + 1 – xy + 1]

= 2xy.2

= 4xy.

Bài 9 trang 22 Toán 8 Tập 1:

a) Cho x + y = 12 và xy = 35. Tính (x − y)2.

b) Cho x – y = 8 và xy = 20. Tính (x + y)2.

c) Cho x + y = 5 và xy = 6. Tính x3 + y3.

d) Cho x – y = 3 và xy = 40. Tính x3 – y3.

Lời giải:

a) Ta có: (x − y)2 = x2 – 2xy + y2

                           = x2 + 2xy + y2 – 4xy

                           = (x + y)2 – 4xy

Thay x + y = 12 và xy = 35 vào biểu thức trên ta có:

(x − y)2 = 122 – 4.35 = 144 – 140 = 4.

b) Ta có: (x + y)2 = x2 + 2xy + y2

                           = x2 – 2xy + y2 + 4xy

                           = (x – y)2 + 4xy

Thay x – y = 8 và xy = 20 vào biểu thức trên ta có:

(x + y)2 = 82 + 4.20 = 64 + 80 = 144.

c) Ta có: x3 + y3 = (x + y).(x2 – xy + y2)

                           = (x + y).(x2 + 2xy + y2 – 3xy)

                           = (x + y).[(x + y)2 – 3xy]

Thay x + y = 5 và xy = 6 vào biểu thức trên ta có:

x3 + y3 = 5.(52 – 3.6) = 5.(25 – 18) = 5.7 = 35.

d) Ta có: x3 – y3 = (x – y).(x2 + xy + y2)

                           = (x – y).(x2 – 2xy + y2 + 3xy)

                           = (x – y).[(x – y)2 + 3xy]

Thay x – y = 3 và xy = 40 vào biểu thức trên ta có:

x3 – y3 = 3.(32 – 3.40) = 3.(9 – 120) = 5.(–111) = –555.

Bài 10 trang 22 Toán 8 Tập 1: Cho hình hộp chữ nhật có chiều dài, chiều rộng, chiều cao đều bằng 5 cm. Thể tích của hình hộp chữ nhật sẽ tăng bao nhiêu nếu:

a) Chiều dài và chiều rộng tăng thêm a cm?

b) Chiều dài, chiều rộng, chiều cao đều tăng thêm a cm?

Lời giải:

Thể tích hình hộp chữ nhật có chiều dài, chiều rộng, chiều cao đều bằng 5 cm là:

53 = 125 (cm3).

a) Chiều dài của hình hộp chữ nhật sau khi tăng thêm a cm là: 5 + a (cm).

Chiều rộng của hình hộp chữ nhật sau khi tăng thêm a cm là: 5 + a (cm).

Thể tích hình hộp chữ nhật lúc sau là:

(5 + a).(5 + a).5 = (5 + a)2.5

                          = (52 + 2.5.a + a2).5

                          = (25 + 10a + a2).5

                          = 25.5 + 10a.5 + a2.5

                          = 125 + 50a + 5a2 (cm3).

Khi đó thể tích của hình hộp chữ nhật đã tăng thêm là:

125 + 50a + 5a2 – 125 = 5a2 + 50a (cm3).

b) Chiều cao của hình hộp chữ nhật sau khi tăng thêm a cm là: 5 + a (cm).

Thể tích hình hộp chữ nhật lúc sau là:

(5 + a).(5 + a).(5 + a) = (5 + a)3

                                   = 53 + 3.52.a + 3.5.a2 + a3

                                   = 125 + 75a + 15a2 + a3 (cm3).

Khi đó thể tích của hình hộp chữ nhật đã tăng thêm là:

125 + 75a + 15a2 + a3 – 125 = a3 + 15a2 + 75a (cm3).

Xem thêm lời giải bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác: 

Giải Toán 8 trang 18

Giải Toán 8 trang 19

Giải Toán 8 trang 20

Giải Toán 8 trang 21

Giải Toán 8 trang 22

1 11,498 21/04/2023


Xem thêm các chương trình khác: