Giải Toán 10 trang 45 Tập 1 Cánh diều

Với giải bài tập Toán lớp 10 trang 45 Tập 1 trong Bài 3: Dấu của tam thức bậc hai sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 45 Tập 1.

1 304 16/02/2023


Giải Toán 10 trang 45 Tập 1

Hoạt động 2 trang 45 Toán lớp 10 Tập 1:

a) Quan sát Hình 19 và cho biết dấu của tam thức bậc hai f(x) = x2 + 2x + 1.

b) Quan sát Hình 20 và cho biết dấu của tam thức bậc hai f(x) = – x2 + 4x – 4.

c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x) = ax+ bx + c (a ≠ 0) với dấu của hệ số a trong trường hợp ∆ = 0.

Quan sát Hình 19 và cho biết dấu của tam thức bậc hai f(x) = x^2 + 2x + 1

Lời giải:

a) Quan sát Hình 19, ta thấy parabol cắt trục hoành tại một điểm có tọa độ (– 1; 0) còn phần còn lại của đồ thị nằm phía trên trục hoành nên tam thức bậc hai f(x) = x2 + 2x + 1 > 0 với mọi x\1.

b) Quan sát Hình 20, ta thấy parabol cắt trục hoành tại một điểm có tọa độ (2; 0) có đỉnh và phần còn lại nằm phía dưới trục hoành nên tam thức bậc hai f(x) = – x2 + 4x – 4 < 0 với mọi x\2.

c) Nếu ∆ = 0 ta có:

- Tam thức bậc hai f(x) = x2 + 2x + 1 có a = 1 > 0 và f(x) > 0 với mọi x\1 nên trong khoảng này f(x) luôn cùng dấu với dấu của hệ số a.

- Tam thức bậc hai f(x) = -x2 + 4x - 4 có a = - 1 < 0 và f(x) < 0 với mọi x\2 nên trong khoảng này f(x) luôn cùng dấu với dấu của hệ số a.

Vậy nếu ∆ = 0 thì f(x) cùng dấu với hệ số a với mọi x\b2a.

Hoạt động 3 trang 45 Toán lớp 10 Tập 1:

a) Quan sát Hình 21 và cho biết dấu của tam thức bậc hai f(x) = x2 + 3x + 2 tùy theo các khoảng của x. 

b) Quan sát Hình 22 và cho biết dấu của tam thức bậc hai f(x) = – x2 + 4x – 3 tùy theo các khoảng của x. 

c) Từ đó rút ra mối quan hệ về dấu của tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) với dấu của hệ số a tùy theo các khoảng của x trong trường hợp ∆ > 0. 

Quan sát Hình 21 và cho biết dấu của tam thức bậc hai f(x) = x^2 + 3x + 2 tùy theo các khoảng của x

Lời giải:

a) Quan sát Hình 21, ta thấy:

Parabol f(x) = x2 – 2x + 2 cắt trục hoành tại hai điểm phân biệt x = -2 và x = -1.

+ Trên khoảng (– 2; – 1), phần parabol nằm hoàn toàn phía dưới trục hoành nên trong khoảng này tam thức bậc hai f(x) = x2 + 3x + 2 < 0.

+ Trên các khoảng (– ∞; – 2) và (– 1; + ∞), phần parabol nằm hoàn toàn phía trên trục hoành nên trong khoảng này tam thức bậc hai f(x) = x2 + 3x + 2 > 0.

b) Quan sát Hình 22, ta thấy:

Parabol y = - x2 + 4x – 3 cắt trục hoành tại hai điểm phân biệt x = 1 và x = 3.

+ Trên khoảng (1; 3), phần parabol nằm hoàn toàn phía trên trục hoành nên trong khoảng này tam thức bậc hai f(x) = – x2 + 4x – 3 > 0.

+ Trên các khoảng (– ∞; 1) và (3; + ∞), phần parabol nằm hoàn toàn phía dưới trục hoành nên trong khoảng này tam thức bậc hai f(x) = – x2 + 4x – 3 < 0.

c) Nếu ∆ > 0 thì f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (– ∞; x1) và (x2; + ∞); f(x) trái dấu với hệ số a với mọi x thuộc khoảng (x1; x2), trong đó x1, x2 là hai nghiệm của f(x) và x1 < x2.

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Giải Toán 10 trang 44 Tập 1

Giải Toán 10 trang 45 Tập 1

Giải Toán 10 trang 46 Tập 1

Giải Toán 10 trang 48 Tập 1

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Bài 4: Bất phương trình bậc hai một ẩn

Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác

1 304 16/02/2023


Xem thêm các chương trình khác: