Giải Toán 10 trang 44 Tập 1 Cánh diều

Với giải bài tập Toán lớp 10 trang 44 Tập 1 trong Bài 3: Dấu của tam thức bậc hai sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 44 Tập 1.

1 230 16/02/2023


Giải Toán 10 trang 44 Tập 1

Câu hỏi khởi động trang 44 Toán lớp 10 Tập 1Để xây dựng phương án kinh doanh cho một loại sản phẩm, doanh nghiệp tính toán lợi nhuận y (đồng) theo công thức sau: y = – 200x2 + 92 000x – 8 400 000, trong đó x là số sản phẩm được bán ra. Như vậy, việc đánh giá hiệu quả kinh doanh loại sản phẩm trên dẫn tới việc xét dấu của y = – 200x2 + 92 000x – 8 400 000, tức là ta cần xét dấu của tam thức bậc hai f(x) = – 200x2 + 92 000x – 8 400 000.

Làm thế nào để xét dấu tam thức bậc hai?

Lời giải:

Đa thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) được gọi là tam thức tâm bậc hai.

Sau bài học thứ 3 của chương 3 này, ta sẽ biết cách xét dấu tam thức bậc hai và áp dụng vào xét dấu tam thức bậc hai f(x) = – 200x2 + 92 000x – 8 400 000.

Ta có: a = – 200, b = 92 000, c = – 8 400 000.

∆ = b2 – 4ac = 920002 – 4 . (– 200) . (– 8 400 000) = 1 744 000 000 > 0

Δ=1  744  000  000=4000109

Khi đó f(x) có hai nghiệm x1=b+Δ2a=92000+4000109400=23010109x2=bΔ2a=920004000109400=230+10109.

Lại có a = – 200 < 0.

Do đó f(x) < 0 với mọi x thuộc các khoảng ;23010109 và 230+10109;+.

f(x) > 0 với mọi x thuộc khoảng 23010109;230+10109.

1. Dấu của tam thức bậc hai

Hoạt động 1 trang 44 Toán lớp 10 Tập 1:

a) Quan sát Hình 17 và cho biết dấu của tam thức bậc hai f(x) = x2 – 2x + 2. 

b) Quan sát Hình 18 và cho biết dấu của tam thức bậc hai f(x) = – x2 + 4x – 5. 

c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) với dấu của hệ số a trong trường hợp ∆ < 0. 

Quan sát Hình 17 và cho biết dấu của tam thức bậc hai f(x) = x^2 – 2x + 2

Lời giải:

a) Quan sát Hình 17 ta thấy parabol nằm hoàn toàn phía trên trục hoành nên với mọi giá trị của x thì giá trị f(x) tương ứng đều mang giá trị dương. Do đó tam thức bậc hai f(x) = x2 – 2x + 2 > 0 với mọi x.

b) Quan sát Hình 18 ta thấy parabol nằm hoàn toàn phía dưới trục hoành nên với mọi giá trị của x thì giá trị f(x) tương ứng đều mang giá trị âm. Do đó tam thức bậc hai f(x) = – x2 + 4x – 5 < 0 với mọi x.

c) Nếu ∆ < 0 ta có:

- Tam thức bậc hai f(x) = x2 – 2x + 2 có a = 1 > 0 và f(x) > 0 với mọi x nên f(x) luôn cùng dấu với dấu của hệ số a.

- Tam thức bậc hai f(x) = -x2 + 4x - 5 có a = - 1 < 0 và f(x) < 0 với mọi x nên f(x) luôn cùng dấu với dấu của hệ số a.

Vậy nếu ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x.

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Giải Toán 10 trang 44 Tập 1

Giải Toán 10 trang 45 Tập 1

Giải Toán 10 trang 46 Tập 1

Giải Toán 10 trang 48 Tập 1

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Bài 4: Bất phương trình bậc hai một ẩn

Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác

1 230 16/02/2023


Xem thêm các chương trình khác: