Giải Toán 10 trang 16 Tập 2 Kết nối tri thức
Với giải bài tập Toán lớp 10 trang 16 Tập 2 trong Bài 16: Hàm số bậc hai sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 16 Tập 2.
Giải Toán 10 trang 16 Tập 2
Bài 6.7 trang 16 Toán 10 Tập 2: Vẽ các đường parabol sau:
Lời giải
a) y = x2 – 3x + 2
Hệ số a = 1 > 0 nên parabol quay bề lõm lên trên.
Parabol y = x2 – 3x + 2 có:
- Tọa độ đỉnh I;
- Trục đối xứng ;
- Giao điểm của đồ thị với trục Oy là A(0; 2).
- Parabol cắt trục hoành tại hai điểm có hoành độ là nghiệm của phương trình x2 – 3x + 2 = 0, tức là x = 2 và x = 1 hay giao điểm với Ox là D(1; 0) và E(2; 0);
- Điểm đối xứng với điểm A qua trục đối xứng là B(3; 2).
Vẽ đường cong đi qua các điểm trên ta được parabol y = x2 – 3x + 2.
b) y = – 2x2 + 2x + 3
Hệ số a = – 2 < 0 nên parabol quay bề lõm xuống dưới.
Parabol y = – 2x2 + 2x + 3 có:
- Tọa độ đỉnh I;
- Trục đối xứng ;
- Giao điểm của đồ thị với trục Oy là A(0; 3).
- Parabol cắt trục hoành tại hai điểm có hoành độ là nghiệm của phương trình – 2x2 + 2x + 3 = 0, tức là x = và x = hay giao với Ox là và
- Điểm đối xứng với điểm A qua trục đối xứng là B(1; 3).
Vẽ đường cong đi qua các điểm trên ta được parabol y = – 2x2 + 2x + 3.
c) y = x2 + 2x + 1
Hệ số a = 1 > 0 nên parabol quay bề lõm lên trên.
Parabol y = x2 + 2x + 1 có:
- Tọa độ đỉnh I(– 1; 0)
- Trục đối xứng x = – 1;
- Giao điểm của đồ thị với trục Oy là A(0; 1).
- Điểm đối xứng với điểm A qua trục đối xứng x = – 1 là B(– 2; 1).
- Lấy điểm C(1; 4) thuộc parabol, điểm đối xứng với C qua trục đối xứng x = – 1 là D(– 3; 4).
Vẽ đường cong đi qua các điểm trên ta được parabol y = x2 + 2x + 1.
d) y = – x2 + x – 1
Hệ số a = – 1 < 0 nên parabol quay bề lõm xuống dưới.
Parabol y = – x2 + x – 1 có:
- Tọa độ đỉnh I;
- Trục đối xứng ;
- Giao điểm của đồ thị với trục Oy là A(0; – 1).
- Điểm đối xứng với điểm A qua trục đối xứng là B(1; – 1).
- Lấy điểm C(2; – 3) thuộc parabol, điểm đối xứng với trục đối xứng là D(– 1; – 3).
Vẽ đường cong đi qua các điểm trên ta được parabol y = – x2 + x – 1.
Bài 6.8 trang 16 Toán 10 Tập 2: Từ các parabol đã vẽ ở Bài tập 6.7, hãy cho biết khoảng đồng biến và khoảng nghịch biến của mỗi hàm số bậc hai tương ứng.
Lời giải
a) Đồ thị hàm số đi xuống từ trái qua phải trên khoảng nên hàm số y = x2 – 3x + 2 nghịch biến trên khoảng .
Đồ thị hàm số đi lên từ trái qua phải trên khoảng nên hàm số y = x2 – 3x + 2 đồng biến trên khoảng .
b) Đồ thị hàm số đi lên từ trái qua phải trên khoảng nên hàm số y = – 2x2 + 2x + 3 đồng biến trên khoảng .
Đồ thị hàm số đi xuống từ trái qua phải trên khoảng nên hàm số y = – 2x2 + 2x + 3 nghịch biến trên khoảng .
c) Đồ thị hàm số đi xuống từ trái qua phải trên khoảng (– ∞; – 1) nên hàm số y = x2 + 2x + 1 nghịch biến trên khoảng (– ∞; – 1).
Đồ thị hàm số đi lên từ trái qua phải trên khoảng (– 1; +∞) nên hàm số y = x2 + 2x + 1 đồng biến trên khoảng (– 1; +∞).
d) Đồ thị hàm số đi lên từ trái qua phải trên khoảng nên hàm số y = – x2 + x – 1 đồng biến trên khoảng .
Đồ thị hàm số đi xuống từ trái qua phải trên khoảng nên hàm số y = – x2 + x – 1 nghịch biến trên khoảng .
Bài 6.9 trang 16 Toán 10 Tập 2: Xác định parabol y = ax2 + bx + 1, trong mỗi trường hợp sau:
a) Đi qua hai điểm A(1; 0) và B(2; 4);
b) Đi qua điểm A(1; 0) và có trục đối xứng x = 1;
d) Đi qua điểm C(– 1; 1) và có tung độ đỉnh bằng – 0,25.
Lời giải
Điều kiện: a ≠ 0.
a) Parabol y = ax2 + bx + 1 đi qua điểm A(1; 0) nên thay x = 1, y = 0 vào hàm số y = ax2 + bx + 1 ta có 0 = a . 12 + b . 1 + 1 ⇔ a + b + 1 = 0 ⇔ a = – 1 – b (1).
Parabol y = ax2 + bx + 1 đi qua điểm B(2; 4) nên thay x = 2, y = 4 vào hàm số y = ax2 + bx + 1 ta có 4 = a . 22 + b . 2 + 1 ⇔ 4a + 2b = 3 (2).
Thay (1) vào (2) được: 4 . (– 1 – b) + 2b = 3 ⇔ – 2b = 7 ⇔ b = .
Do đó, a = – 1 .
Vậy .
b) Parabol y = ax2 + bx + 1 đi qua điểm A(1; 0) nên thay x = 1, y = 0 vào hàm số y = ax2 + bx + 1 ta có 0 = a . 12 + b . 1 + 1 ⇔ a + b + 1 = 0 ⇔ a = – 1 – b (3).
Parabol y = ax2 + bx + 1 có trục đối xứng x = 1 nên (4).
Thay (3) vào (4) được: 2 . (– 1 – b) = – b ⇔ b = – 2.
Do đó, a = – 1 – (– 2) = 1.
Vậy y = x2 – 2x + 1.
c) Parabol y = ax2 + bx + 1 có đỉnh I(1; 2).
Khi đó (5).
Và 2 = a . 12 + b . 1 + 1 ⇔ a + b = 1 ⇔ a = 1 – b (6).
Thay (6) vào (5) ta được: 2 . (1 – b) = – b ⇔ b = 2.
Khi đó a = 1 – 2 = – 1.
Vậy y = – x2 + 2x + 1.
d) Parabol y = ax2 + bx + 1 đi qua điểm C(– 1; 1) nên thay x = – 1 và y = 1 vào hàm số y = ax2 + bx + 1 ta có 1 = a . (– 1)2 + b . (– 1) + 1 ⇔ a – b = 0 ⇔ a = b.
Ta có: ∆ = b2 – 4ac = a2 – 4 . a . 1 = a2 – 4a.
Tung độ đỉnh bằng – 0,25 nên
(do a ≠ 0)
⇔ a – 4 = 1 ⇔ a = 5.
Vậy a = b = 5.
Vậy y = 5x2 + 5x + 1.
Bài 6.10 trang 16 Toán 10 Tập 2: Xác định parabol y = ax2 + bx + c, biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; – 12).
Lời giải
Điều kiện: a ≠ 0.
Do parabol có đỉnh là I(6; – 12) nên phương trình parabol có dạng y = a(x – 6)2 – 12.
Lại có parabol đi qua điểm A(8; 0) nên thay x = 8 và y = 0 vào hàm số trên ta có:
0 = a(8 – 6)2 – 12 ⇔ a . 4 – 12 = 0 ⇔ a = 3 (thỏa mãn).
Vậy phương trình parabol là y = 3(x – 6)2 – 12 hay y = 3x2 – 36x + 96.
Bài 6.11 trang 16 Toán 10 Tập 2: Gọi (P) là đồ thị hàm số bậc hai y = ax2 + bx + c. Hãy xác định dấu của hệ số a và biệt thức ∆, trong mỗi trường hợp sau:
a) (P) nằm hoàn toàn phía trên trục hoành;
b) (P) nằm hoàn toàn phía dưới trục hoành;
c) (P) cắt trục hoành tại hai điểm phân biệt và có đỉnh nằm phía dưới trục hoành;
d) (P) tiếp xúc với trục hoành và nằm phía trên trục hoành.
Lời giải
a) Do (P) nằm hoàn toàn phía trên trục hoành nên
- Bề lõm của đồ thị phải quay lên trên, do đó hệ số a > 0.
- Giá trị của hàm số y > 0 nên > 0 (vì là tung độ của đỉnh), mà a > 0 nên 4a > 0, do đó – ∆ > 0 ⇔ ∆ < 0.
b) Vì (P) nằm hoàn toàn phía dưới trục hoành nên:
- Bề lõm của đồ thị phải quay xuống dưới, do đó hệ số a < 0.
- Giá trị của hàm số y < 0 nên biệt thức < 0 (vì là tung độ của đỉnh), mà a < 0 nên 4a < 0, do đó – ∆ > 0 ⇔ ∆ < 0.
c) Do (P) cắt trục hoành tại hai điểm phân biệt nên phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt, vậy biệt thức ∆ > 0.
Lại có (P) có đỉnh nằm phía dưới trục hoành và cắt trục hoành tại 2 điểm phân biệt nên bề lõm của đồ thị phải quay lên trên nên hệ số a > 0.
d) Do (P) tiếp xúc với trục hoành nên phương trình ax2 + bx + c = 0 có nghiệm kép, vậy biệt thức ∆ = 0.
Lại có (P) nằm phía trên trục hoành nên bề lõm của đồ thị phải quay lên trên nên hệ số a > 0.
Bài 6.12 trang 16 Toán 10 Tập 2: Hai bạn An và Bình trao đổi với nhau.
Lời giải
Cổng Trường Đại học Bách khoa Hà Nội có dạng là một parabol, gọi dạng parabol này là y = ax2 + bx + c với a ≠ 0.
Chọn hệ trục tọa độ Oxy như hình vẽ với Oy là trục đối xứng của cổng:
Khoảng cách giữa hai chân cổng AB = 8 m.
Vì Oy là trục đối xứng của parabol nên O là trung điểm của AB, do đó AO = OB = 4 m.
Lấy điểm C cách A một khoảng 0,5 m, theo bài ra, chiều cao của cổng tính từ một điểm trên mặt đất cách chân cổng 0,5 m là 2,93 m nên CD = 2,93 m.
CO = AO – AC = 4 – 0,5 = 3,5 m.
Vậy ta xác định được tọa độ các điểm: A(– 4; 0), B(4; 0), C(– 3,5; 0), D(– 3,5; 2,93).
Parabol đi qua các điểm A, B, D nên phương trình y = ax2 + bx + c thỏa mãn tọa độ các điểm A, B, D, thay tọa độ các điểm tương ứng ta có:
0 = a . (– 4)2 + b . (– 4) + c ⇔ 16a – 4b + c = 0 (1)
0 = a . 42 + b . 4 + c ⇔ 16a + 4b + c = 0 (2)
2,93 = a . (– 3,5)2 + b . (– 3,5) + c = 0 ⇔ 12,25a – 3,5b + c = 2,93 (3)
Lấy (2) trừ (1) theo vế ta được 8b = 0 ⇔ b = 0 thay vào (1) và (3) ta có hệ:
Vậy parabol có tọa độ đỉnh I.
Chiều cao của cổng parabol là tung độ đỉnh I và bằng m.
Vậy kết quả của bạn An tính ra là không chính xác.
Bài 6.13 trang 16 Toán 10 Tập 2: Bác Hùng dùng 40 m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau.
a) Tính diện tích mảnh vườn hình chữ nhật được rào theo chiều rộng x (mét) của nó.
b) Tính kích thước của mảnh vườn hình chữ nhật có diện tích lớn nhất mà bác Hùng có thể rào được.
Lời giải
a) Bác Hùng dùng lưới để rào thành một mảnh vườn hình chữ nhật có chiều rộng x (mét).
Do tấm lưới dài 40 m nên chu vi của mảnh vườn hình chữ nhật là 40 m.
Nửa chu vi của mảnh vườn là 40 : 2 = 20 m.
Chiều dài của mảnh vườn rào là: 20 – x (m).
Diện tích mảnh vườn hình chữ nhật là: S(x) = x . (20 – x) = – x2 + 20x (m2).
Như vậy, diện tích S(x) của mảnh vườn là hàm số của chiều rộng x.
b) Để tìm diện tích lớn nhất của mảnh vườn hình chữ nhật bác Hùng có thể rào được, ta tính giá trị lớn nhất của hàm số S(x).
Hàm số S(x) là hàm số bậc hai với a = – 1, b = 20, c = 0.
Tọa độ đỉnh của đồ thị hàm số S(x) = – x2 + 20x là I(10; 100).
Vậy hàm số S(x) đạt giá trị lớn nhất là S =100 tại x = 10.
Khi đó chiều dài là 20 – 10 = 10 (m).
Vậy để mảnh vườn rào được có diện tích lớn nhất thì bác Hùng nên rào lưới thép gai thành hình vuông có độ dài cạnh là 10 m hay kích thước của mảnh vườn là 10 m × 10 m.
Bài 6.14 trang 16 Toán 10 Tập 2: Quỹ đạo của một vật được ném lên từ gốc O (được chọn là điểm ném) trong mặt phẳng tọa độ Oxy là một parabol có phương trình , trong đó x (mét) là khoảng cách theo phương ngang trên mặt đất từ vị trí của vật đến gốc O, y (mét) là độ cao của vậy so với mặt đất (H.6.15).
a) Tìm độ cao lớn nhất của vật trong quá trình bay.
Lời giải
a) Vật đạt độ cao lớn nhất khi y đạt giá trị lớn nhất.
Do đó, độ cao lớn nhất của vật trong quá trình bay chính là tung độ đỉnh của parabol có phương trình .
Hoành độ đỉnh là .
Tung độ của đỉnh là .
Vậy độ cao lớn nhất trong quá trình bay của vật là m.
b) Vật chạm đất tức là y = 0, hay .
Loại trường hợp x = 0 do đây là vị trí điểm gốc tọa độ O.
Vậy tầm xa của quỹ đạo là m.
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 17: Dấu của tam thức bậc hai
Bài 18: Phương trình quy về phương trình bậc hai
Bài 19: Phương trình đường thẳng
Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách.
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức