Giải Toán 10 trang 103 Tập 2 Cánh diều
Với giải bài tập Toán lớp 10 trang 103 Tập 2 trong Bài tập cuối chương 7 sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 103 Tập 2.
Giải Toán 10 trang 103 Tập 2
Bài 1 trang 103 Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho A(3; 4); B(2; 5). Tọa độ của là:
Lời giải
Đáp án đúng là: C.
Ta có: . Suy ra .
Bài 2 trang 103 Toán 10 Tập 2: Vectơ nào sau đây là một vectơ pháp tuyến của đường thẳng Δ: 2x – 3y + 4 = 0?
Lời giải
Đáp án đúng là: D.
Đường thẳng ∆: 2x – 3y + 4 = 0 có một vectơ pháp tuyến là .
Bài 3 trang 103 Toán 10 Tập 2: Tọa độ tâm I của đường tròn (C): (x + 6)2 + (y – 12)2 = 81 là:
Lời giải
Đáp án đúng là: B.
Ta có: (x + 6)2 + (y – 12)2 = 81
⇔ [x – (– 6)]2 + (y – 12)2 = 92.
Vậy đường tròn (C) có tâm I(– 6; 12).
Bài 4 trang 103 Toán 10 Tập 2: Khoảng cách từ điểm A(1; 1) đến đường thẳng Δ: 3x + 4y + 13 = 0 bằng:
Lời giải
Đáp án đúng là: D.
Khoảng cách từ điểm A(1; 1) đến đường thẳng Δ: 3x + 4y + 13 = 0 là
.
Bài 5 trang 103 Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho tam giác MNP có M(2; 1), N(– 1; 3), P(4; 2).
c) Tính độ dài các đoạn thẳng MN, MP;
e) Tìm tọa độ trung điểm I của NP và trọng tâm G của tam giác MNP.
Lời giải
a) Tọa độ của vectơ chính là tọa độ của điểm M(2; 1) nên .
Ta có: , suy ra .
Và , suy ra .
b) .
c) Độ dài đoạn thẳng MN là:
.
Độ dài đoạn thẳng MP là:
.
d) Ta có: .
Vậy .
e) Tọa độ trung điểm I của NP là .
Vậy .
Tọa độ trọng tâm G của tam giác MNP là .
Vậy .
Bài 6 trang 103 Toán 10 Tập 2: Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:
a) d đi qua điểm A(– 3; 2) và có một vectơ pháp tuyến là ;
b) d đi qua điểm B(– 2; – 5) và có một vectơ chỉ phương là ;
c) d đi qua hai điểm C(4; 3) và D(5; 2).
Lời giải
a) + Đường thẳng d đi qua điểm A(– 3; 2) và có một vectơ pháp tuyến là .
Vậy phương trình tổng quát của đường thẳng d là:
2[x – (– 3)] – 3(y – 2) = 0 hay 2x – 3y + 12 = 0.
+ Đường thẳng d có một vectơ pháp tuyến là suy ra d có một vectơ chỉ phương là .
Vậy phương trình tham số của đường thẳng d là (t là tham số).
b) + Đường thẳng d đi qua điểm B(– 2; – 5) và có một vectơ chỉ phương là .
Vậy phương trình tham số của đường thẳng d là (t là tham số).
+ Đường thẳng d có một vectơ chỉ phương là nên d có một vectơ pháp tuyến là .
Vậy phương trình tổng quát của đường thẳng d là:
6(x + 2) + 7(y + 5) = 0 hay 6x + 7y + 47 = 0.
c) Ta có: , suy ra .
+ Đường thẳng d đi qua 2 điểm C, D nên có một vectơ chỉ phương là .
Vậy phương trình tham số của đường thẳng d là (t là tham số).
+ Đường thẳng d có vectơ chỉ phương là nên d có một vectơ pháp tuyến là .
Vậy phương trình tổng quát của đường thẳng d là:
1(x – 4) + 1(y – 3) = 0 hay x + y – 7 = 0.
Bài 7 trang 103 Toán 10 Tập 2: Lập phương trình đường tròn (C) trong mỗi trường hợp sau:
a) (C) có tâm I(– 4; 2) và bán kính R = 3;
b) (C) có tâm P(3; – 2) và đi qua điểm E(1; 4);
c) (C) có tâm Q(5; – 1) và tiếp xúc với đường thẳng Δ: 3x + 4y – 1 = 0;
d) (C) đi qua ba điểm A(– 3; 2), B(– 2; – 5) và D(5; 2).
Lời giải
a) Đường tròn (C) có tâm I(– 4; 2) và bán kính R = 3.
Vậy phương trình đường tròn (C) là
[x – (– 4)]2 + (y – 2)2 = 32 hay (x + 4)2 + (y – 2)2 = 9.
b) Đường tròn (C) có tâm P(3; – 2) và đi qua điểm E(1; 4).
Do đó bán kính đường tròn (C) là
R = PE = .
Vậy phương trình đường tròn (C) là
hay (x – 3)2 + (y + 2)2 = 40.
c) Đường tròn (C) có tâm Q(5; – 1) và tiếp xúc với đường thẳng Δ: 3x + 4y – 1 = 0.
Do đó bán kính của đường tròn (C) là
R = d(Q, ∆) = .
Vậy phương trình đường tròn (C) là
(x – 5)2 + [y – (– 1)]2 = 22 hay (x – 5)2 + (y + 1)2 = 4.
d) Đường tròn (C) đi qua ba điểm A(– 3; 2), B(– 2; – 5) và D(5; 2).
Giả sử tâm của đường tròn là điểm I(a; b).
Ta có IA = IB = ID ⇔ IA2 = IB2 = ID2.
Vì IA2 = IB2, IB2 = ID2 nên
Đường tròn tâm I(1; – 1) có bán kính
R = IA =
Phương trình đường tròn (C) là (x – 1)2 + [y – (– 1)]2 = 52.
Vậy phương trình đường tròn (C) là (x – 1)2 + (y + 1)2 = 25.
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Chủ đề 2: Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng
Bài 2: Tập hợp. Các phép toán trên tập hợp
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều