Giải SBT Toán 10 trang 14 Tập 1 Cánh diều
Với Giải SBT Toán 10 trang 14 Tập 1 trong Bài 2: Tập hợp. Các phép toán trên tập hợp Toán lớp 10 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 14.
Giải SBT Toán 10 trang 14 Tập 1 Cánh diều
Bài 18 trang 14 SBT Toán 10 Tập 1: Cho tập hợp A = {x ∈ ℕ| x ≤ 4}. A là tập hợp nào sau đây?
A. {0; 1; 2; 3; 4};
B. (0; 4];
C. {0; 4};
D. {1; 2; 3; 4}.
Lời giải:
Đáp án đúng là A
Các phần tử thuộc tập hợp A là các số tự nhiên thỏa mãn bé hơn hoặc bằng 4. Do đó A = {0; 1; 2; 3; 4}.
Bài 19 trang 14 SBT Toán 10 Tập 1: Cho tập hợp A = {0; 1; 2; 3; 4}, B = {3; 4; 5; 6}. Tập hợp A∪B bằng:
A. {0; 1; 2; 3; 4; 5; 6};
B. {3; 4};
C. {0; 1; 2};
D. {5; 6}.
Lời giải:
Đáp án đúng là A
Tập hợp A∪B gồm các phần tử thuộc tập hợp A hoặc thuộc tập hợp B nên A∪B = {0; 1; 2; 3; 4; 5; 6}.
Bài 20 trang 14 SBT Toán 10 Tập 1: Cho tập hợp A = {0; 1; 2; 3; 4}, B = {3; 4; 5; 6}. Tập hợp A \ B bằng:
A. {0; 1; 2; 3; 4; 5; 6};
B. {3; 4};
C. {0; 1; 2};
D. {5; 6}.
Lời giải:
Đáp án đúng là C
Tập hợp A\B gồm các phần tử thuộc tập hợp A không thuộc tập hợp B nên A\B = {0; 1; 2}.
Bài 21 trang 14 SBT Toán 10 Tập 1: Cho hai tập hợp A = (– 3; 3], B = ( – 2; +∞). Tập hợp A∩B bằng:
A. {– 1; 0; 1; 2; 3};
B. [– 2; 3];
C. ( – 2; 3];
D. (– 3; +∞).
Lời giải:
Đáp án đúng là C
Ta có sơ đồ sau:
Tập hợp A∩B gồm các phần tử vừa thuộc tập hợp A vừa thuộc tập hợp B nên A∩B = ( – 2; 3].
Bài 22 trang 14 SBT Toán 10 Tập 1: Cho tập hợp A = {x ∈ ℝ| x ≥ 2, x ≠ 5}. A là tập hợp nào sau đây?
A. (2; +∞)\{5};
B. [2; 5);
C. (2; 5);
D. [2; +∞)\{5}.
Lời giải:
Đáp án đúng là D
Tập hợp A bao gồm các số thực thỏa mãn lớn hơn hoặc bằng 2 và khác 5 nên A = [2; +∞)\{5}.
Bài 23 trang 14 SBT Toán 10 Tập 1: Cho hai tập hợp A = {x ∈ ℝ| – 2 ≤ x ≤ 5}, B = {x ∈ ℤ | x2 – x – 6 = 0}. Tập hợp A\B bằng:
A. (– 2; 3);
B. (– 2; 3) ∪ (3; 5];
C. (3; 5];
D. [2; +∞)\{5}.
Lời giải:
Đáp án đúng là B
Ta có: A = {x ∈ ℝ| – 2 ≤ x ≤ 5} = [– 2; 5];
Xét phương trình x2 – x – 6 = 0
⇔ (x + 2)(x – 3) = 0
⇔
⇔
Vì – 2; 3 ∈ ℤ nên B = {– 2; 3}.
Tập hợp A\B gồm các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B nên A\B = ( – 2; 5]\{3} hay A\B = (– 2; 3) ∪ (3; 5].
Bài 24 trang 14 SBT Toán 10 Tập 1: Cho hai tập hợp A = [– 1; +∞). Tập hợp CℝA bằng:
A. (1; +∞);
B. (– ∞; – 1);
C. (– ∞; – 1];
D. [2; +∞)\{5}.
Lời giải:
Đáp án đúng là B
Tập hợp CℝA là tập hợp phần bủ của A trong ℝ nên CℝA = ( – ∞; – 1).
Bài 25 trang 14 SBT Toán 10 Tập 1: Gọi A là tập nghiệm của đa thức P(x), B là tập nghiệm của đa thức Q(x), C là tập nghiệm của đa thức P(x).Q(x). C là tập hợp nào sau đây?
A. A∪B;
B. A∩B;
C. A\B;
D. B\A.
Lời giải:
Đáp án đúng là A
Xét P(x).Q(x) = 0
⇔
Do đó nghiệm của đa thức P(x).Q(x) là nghiệm của đa thức P(x) hoặc đa thức Q(x) nên C = A∪B.
Bài 26 trang 14 SBT Toán 10 Tập 1: Gọi A là tập nghiệm của đa thức P(x), B là tập nghiệm của đa thức Q(x), C là tập nghiệm của đa thức P2(x) + Q2(x). D là tập hợp nào sau đây?
A. A∪B;
B. A∩B;
C. A\B;
D. B\A.
Lời giải:
Đáp án đúng là B
Xét P2(x) + Q2(x) = 0
Với mọi giá trị thực của x: P2(x) ≥ 0 và Q2(x) ≥ 0 nên để P2(x) + Q2(x) = 0 thì P(x) = Q(x) = 0.
Do đó nghiệm của đa thức P(x).Q(x) là nghiệm của đa thức P(x) vừa là nghiệm của đa thức Q(x) nên C = A∩B.
Bài 27 trang 14 SBT Toán 10 Tập 1: Cho tập hợp X = {a; b; c; d}. Viết tất cả các tập hợp con có ba phần tử của tập hợp X.
Lời giải:
Các tập hợp con có ba phần tử của tập hợp X là:
{a; b; c}, {a; b; d}, {a; c; d}, {b; c; d}.
Vậy các tập hợp con có ba phần tử của tập hợp X là: {a; b; c}, {a; b; d}, {a; c; d}, {b; c; d}.
Bài 28 trang 14 SBT Toán 10 Tập 1: Cho ba tập hợp: A là tập hợp các tam giác; B là tập hợp các tam giác cân; C là tập hợp các tam giác đều. Dùng kí hiệu ⊂ để mô tả quan hệ của hai trong các tập hợp trên.
Lời giải:
Ta có các tam giác cân, tam giác đều là tam giác. Do đó tập hợp B, tập hợp C là các tập hợp con của tập hợp A.
Ta lại có tam giác đều là tam giác cân nhưng tam giác cân chưa chắc là tam giác đều nên tập hợp C là tập con của tập hợp B.
Khi đó ta có: C ⊂ B ⊂ A.
Vậy ta có quan hệ của các tập hợp đã cho là: C ⊂ B ⊂ A.
Bài 29 trang 14 SBT Toán 10 Tập 1: Dùng kí hiệu ⊂ để mô tả mối quan hệ của hai tập hợp khác nhau trong các tập hợp sau: [– 1; 3]; (– 1; 3); [– 1; 3); (– 1; 3]; {– 1; 3}.
Lời giải:
Ta có:
[– 1; 3] = {x ∈ ℝ| – 1 ≤ x ≤ 3};
(– 1; 3) = {x ∈ ℝ| – 1 < x < 3};
[– 1; 3) = {x ∈ ℝ| – 1 ≤ x < 3};
(– 1; 3] = {x ∈ ℝ| – 1 < x ≤ 3};
{– 1; 3}
Khi đó ta có:
(– 1; 3) ⊂ [– 1; 3]; [– 1; 3) ⊂ [– 1; 3]; (– 1; 3] ⊂ [– 1; 3]; {– 1; 3} ⊂ [– 1; 3].
(– 1; 3) ⊂ [– 1; 3); (– 1; 3) ⊂ (– 1; 3].
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Giải SBT Toán 10 trang 15 Tập 1
Giải SBT Toán 10 trang 16 Tập 1
Bài 18 trang 14 SBT Toán 10 Tập 1: Cho tập hợp A = {x ∈ ℕ| x ≤ 4}. A là tập hợp nào sau đây?...
Bài 19 trang 14 SBT Toán 10 Tập 1: Cho tập hợp A = {0; 1; 2; 3; 4}, B = {3; 4; 5; 6}. Tập hợp...
Bài 20 trang 14 SBT Toán 10 Tập 1: Cho tập hợp A = {0; 1; 2; 3; 4}, B = {3; 4; 5; 6}. Tập hợp...
Bài 21 trang 14 SBT Toán 10 Tập 1: Cho hai tập hợp A = (– 3; 3], B = ( – 2; +∞). Tập hợp A∩B...
Bài 22 trang 14 SBT Toán 10 Tập 1: Cho tập hợp A = {x ∈ ℝ| x ≥ 2, x ≠ 5}. A là tập hợp nào...
Bài 23 trang 14 SBT Toán 10 Tập 1: Cho hai tập hợp A = {x ∈ ℝ| – 2 ≤ x ≤ 5}, B = {x ∈ ℤ | x2...
Bài 24 trang 14 SBT Toán 10 Tập 1: Cho hai tập hợp A = [– 1; +∞). Tập hợp CℝA bằng:...
Bài 25 trang 14 SBT Toán 10 Tập 1: Gọi A là tập nghiệm của đa thức P(x), B là tập nghiệm của...
Bài 26 trang 14 SBT Toán 10 Tập 1: Gọi A là tập nghiệm của đa thức P(x), B là tập nghiệm của...
Bài 27 trang 14 SBT Toán 10 Tập 1: Cho tập hợp X = {a; b; c; d}. Viết tất cả các tập hợp con có ba phần tử của tập hợp X....
Bài 28 trang 14 SBT Toán 10 Tập 1: Cho ba tập hợp: A là tập hợp các tam giác; B là tập hợp...
Bài 29 trang 14 SBT Toán 10 Tập 1: Dùng kí hiệu ⊂ để mô tả mối quan hệ của hai tập hợp khác...
Bài 30 trang 15 SBT Toán 10 Tập 1: Cho ba tập hợp sau: A = {x ∈ ℕ| x ⋮ 2}, B = {x ∈ ℕ| x ⋮ 3},...
Bài 31 trang 15 SBT Toán 10 Tập 1: Xác định các tập hợp sau:...
Bài 32 trang 15 SBT Toán 10 Tập 1: Cho A là một tập hợp. Xác định các tập hợp sau:...
Bài 33 trang 15 SBT Toán 10 Tập 1: Cho các tập hợp A. Có nhận xét gì về tập hợp B nếu:...
Bài 34 trang 15 SBT Toán 10 Tập 1: Trong đợt văn nghệ chào mừng ngày 20/11, lớp 10A đăng...
Bài 35 trang 15 SBT Toán 10 Tập 1: Lớp 10A có 27 học sinh tham gia ít nhất một trong hai câu...
Bài 36 trang 15 SBT Toán 10 Tập 1: Tìm tập hợp D = E ∩ G, biết E và G lần lượt là tập nghiệm...
Bài 37 trang 15 SBT Toán 10 Tập 1: Cho các tập hợp: A = [– 1; 7], B = (m – 1; m + 5) với m là...
Bài 38 trang 16 SBT Toán 10 Tập 1: Cho A = [m; m + 2] và B = [n; n + 1] với m, n là các tham...
Bài 39 trang 16 SBT Toán 10 Tập 1: Cho A = (– ∞; m + 1), B = [3; +∞) với m là một tham số...
Bài 40 trang 16 SBT Toán 10 Tập 1: Biểu diễn tập hợp A = {x ∈ ℝ| x2 ≥ 9} thành hợp các nửa...
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 1: Bất phương trình bậc nhất hai ẩn
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều