Cho hình lập phương ABCD.A’B’C’D’ có AB = a. a) Chứng minh C’D vuông góc (BCD’), BD’ vuông góc C’D
Lời giải Bài 59 trang 119 SBT Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.
Giải SBT Toán 11 Bài tập cuối chương 8
Bài 59 trang 119 SBT Toán 11 Tập 2: Cho hình lập phương ABCD.A’B’C’D’ có AB = a.
a) Chứng minh C’D ⊥ (BCD’), BD’ ⊥ C’D và (BC’D) ⊥ (BCD’);
b) Tính góc giữa hai đường thẳng BD và A’D’;
c) Tính góc giữa đường thẳng BD và mặt phẳng (CDD’C’);
d) Tính số đo của góc nhị diện [B, DD’, C];
e) Tính khoảng cách từ điểm D đến mặt phẳng (BCD’);
g) Chứng minh B’C’ // (BCD’) và tính khoảng cách giữa đường thẳng B’C’ và mặt phẳng (BCD’);
h) Tính thể tích của khối tứ diện C’BCD và khoảng cách từ điểm C đến mặt phẳng (BC’D).
Lời giải:
a) Do ABCD.A’B’C’D’ là hình lập phương, nên ta có BC ⊥ (CDD’C’).
Mà C’D ⊂ (CDD’C’) nên BC ⊥ C’D.
Vì CDD’C’ là hình vuông nên C’D ⊥ CD’.
⦁ Ta có: C’D ⊥ BC, C’D ⊥ CD’, BC ∩ CD’ = C trong (BCD’)
Suy ra C’D ⊥ (BCD’).
⦁ Hơn nữa BD’ ⊂ (BCD’) nên C’D ⊥ BD’ hay BD’ ⊥ C’D.
⦁ Do C’D ⊥ (BCD’), C’D ⊂ (BC’D) nên (BC’D) ⊥ (BCD’).
b) Do ABCD.A’B’C’D’ là hình lập phương, nên ta có AD // A’D’.
Nên góc giữa hai đường thẳng BD và A’D’ bằng góc giữa hai đường thẳng BD và AD và bằng
Do ABCD là hình vuông nên
Vậy góc giữa hai đường thẳng BD và A’D’ bằng 45°.
c) Do BC ⊥ (CDD’C’) nên góc giữa đường thẳng BD và mặt phẳng (CDD’C’) bằng góc giữa hai đường thẳng BD và CD và bằng
Do ABCD là hình vuông nên
Vậy góc giữa đường thẳng BD và mặt phẳng (CDD’C’) bằng 45°.
d) Do ABCD.A’B’C’D’ là hình lập phương, nên ta có DD’ ⊥ (ABCD).
Mà BD ⊂ (ABCD) và CD ⊂ (ABCD) nên DD’ ⊥ BD và DD’ ⊥ CD.
Hơn nữa BD ∩ CD = D ∈ DD’.
Suy ra là góc phẳng nhị diện của góc nhị diện [B, DD’, C].
Theo câu c ta có
Vậy số đo góc nhị diện [B, DD’, C] bằng 45°.
e) Gọi O là giao điểm của C’D và CD’.
Theo câu a ta có: C’D ⊥ (BCD’) nên DO ⊥ (BCD’) (do O ∈ C’D).
Như vậy: d(D, (BCD’)) = DO.
Áp dụng định lí Pythagore trong tam giác CC’D vuông tại C ta có:
Do CDD’C’ là hình vuông, O là giao điểm của C’D và CD’ nên
Vậy khoảng cách từ điểm D đến mặt phẳng (BCD’) bằng
g) Do ABCD.A’B’C’D’ là hình lập phương, nên ta có B’C’ // BC.
Mà BC ⊂ (BCD’), suy ra B’C’ // (BCD’).
Khi đó d(B’C’, (BCD’)) = d(C’, (BCD’)).
Theo câu a ta có C’D ⊥ (BCD’) nên C’O ⊥ (BCD’) (do O ∈ C’D).
Suy ra d(C’, (BCD’)) = C’O.
Do CDD’C’ là hình vuông, O là giao điểm của C’D và CD’ nên
Vậy
h) ⦁ Do ABCD.A’B’C’D’ là hình lập phương, nên ta có CC’ ⊥ (ABCD) hay CC’ ⊥ (BCD).
Thể tích của khối tứ diện C’BCD có đường cao CC’ và đáy là tam giác BCD là:
⦁ Do BC’, C’D, BD lần lượt là đường chéo của các hình vuông BCC’B’, CDD’C’, ABCD cạnh a.
Nên ta có
Suy ra BC’D là tam giác đều cạnh
Trong tam giác BC’D đều cạnh a, kẻ đường cao BH (H ∈ C’D) (hình vẽ dưới đây).
Suy ra BH cũng là đường trung tuyến của tam giác BC’D hay H là trung điểm của C’D.
Áp dụng định lí Pythagore trong tam giác BHD vuông tại H có:
BD2 = BH2 + HD2
Suy ra
Ta có diện tích tam giác BC’D là:
Xét khối tứ diện C’BCD có C là đỉnh, BC’D là đáy thì ta có công thức khác có thể tính thể tích của khối tứ diện C’BCD là:
Vậy khoảng cách từ điểm C đến mặt phẳng (BC’D) bằng
Xem thêm lời giải SBT Toán lớp 11 bộ sách Cánh diều hay, chi tiết khác:
Bài 58 trang 118 SBT Toán 11 Tập 2: Trong các khẳng định sau, có bao nhiêu khẳng định đúng?...
Bài 59 trang 119 SBT Toán 11 Tập 2: Cho hình lập phương ABCD.A’B’C’D’ có AB = a....
Xem thêm lời giải SBT Toán lớp 11 bộ sách Cánh diều hay, chi tiết khác:
Bài 2: Đường thẳng vuông góc với mặt phẳng
Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Bài 4: Hai mặt phẳng vuông góc
Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Cánh diều (hay nhất)
- Văn mẫu lớp 11 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 11 – Cánh diều
- Tác giả tác phẩm Ngữ văn 11 - Cánh diều
- Giải SBT Ngữ văn 11 – Cánh diều
- Bố cục tác phẩm Ngữ văn 11 – Cánh diều
- Giải Chuyên đề học tập Ngữ văn 11 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Cánh diều
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 11 – ilearn Smart World
- Giải sbt Tiếng Anh 11 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 11 ilearn Smart World đầy đủ nhất
- Giải sgk Vật lí 11 – Cánh diều
- Lý thuyết Vật lí 11 – Cánh diều
- Giải sbt Vật lí 11 – Cánh diều
- Giải Chuyên đề học tập Vật lí 11 – Cánh diều
- Giải sgk Hóa học 11 – Cánh diều
- Giải Chuyên đề học tập Hóa học 11 – Cánh diều
- Lý thuyết Hóa 11 - Cánh diều
- Giải sbt Hóa học 11 – Cánh diều
- Giải sgk Sinh học 11 – Cánh diều
- Lý thuyết Sinh học 11 – Cánh diều
- Giải Chuyên đề học tập Sinh học 11 – Cánh diều
- Giải sbt Sinh học 11 – Cánh diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Cánh diều
- Lý thuyết Kinh tế pháp luật 11 – Cánh diều
- Giải sbt Kinh tế pháp luật 11 – Cánh diều
- Giải sgk Lịch sử 11 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 11 – Cánh diều
- Lý thuyết Lịch sử 11 - Cánh diều
- Giải sbt Lịch sử 11 – Cánh diều
- Giải sgk Địa lí 11 – Cánh diều
- Giải Chuyên đề học tập Địa lí 11 – Cánh diều
- Lý thuyết Địa lí 11 - Cánh diều
- Giải sbt Địa lí 11 – Cánh diều
- Giải sgk Công nghệ 11 – Cánh diều
- Lý thuyết Công nghệ 11 - Cánh diều
- Giải sbt Công nghệ 11 – Cánh diều
- Giải sgk Tin học 11 – Cánh diều
- Giải Chuyên đề học tập Tin học 11 – Cánh diều
- Lý thuyết Tin học 11 - Cánh diều
- Giải sbt Tin học 11 – Cánh diều
- Giải sgk Giáo dục quốc phòng an ninh 11 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 11 – Cánh diều
- Giải sbt Giáo dục quốc phòng 11 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 – Cánh diều