Biết rằng hai đa thức (thu gọn) bằng nhau khi chúng có cùng số các hạng tử, và với mỗi hạng tử của đa thức

Lời giải Bài 5 trang 13 VTH Toán 8 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Vở thực hành Toán 8.

1 711 09/08/2023


Giải Vở thực hành Toán 8 Bài 3: Phép cộng và phép trừ đa thức

Bài 5 trang 13 VTH Toán 8 Tập 1: Biết rằng hai đa thức (thu gọn) bằng nhau khi chúng có cùng số các hạng tử, và với mỗi hạng tử của đa thức này đều có một hạng tử của đa thức kia đồng dạng và có cùng hệ số với nó. Áp dụng điều đó để giải bài toán sau:

Cho hai đa thức P = ax2y2 – 3xy3 + bx3y – xy + 2x – 3 và Q = cxy3 – 4x2y2 – x3y + dxy + y + 1, trong đó a, b, c, d là các số thực. Tìm a, b, c và d, biết rằng:

P + Q = 4x3y – 7xy3 + 2x + y – 2.

Lời giải:

Ta có:

P + Q = (ax2y2 – 3xy3 + bx3y – xy + 2x – 3) + (cxy3 – 4x2y2 – x3y + dxy + y + 1)

= (a – 4)x2y2 + (b – 1)x3y + (c – 3)xy3 + (d – 1)xy + 2x + y – 2.

Vậy để xảy ra P + Q = 4x3y – 7xy3 + 2x + y – 2, ta phải có:

a – 4 = 0 (hệ số của x2y2), suy ra a = 4; c – 3 = −7 (hệ số của xy3), suy ra c = −4; b – 1 = 4 (hệ số của x3y), suy ra b = 5; d – 1 = 0 (hệ số của xy), suy ra d = 1.

Đáp số là: a = 4, b = 5, c = −4 và d = 1.

1 711 09/08/2023


Xem thêm các chương trình khác: