Sách bài tập Toán 10 Bài 10 (Kết nối tri thức): Vectơ trong mặt phẳng tọa độ
Với giải sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 Bài 10.
Giải sách bài tập Toán lớp 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức
Giải SBT Toán 10 trang 58 Tập 1
Bài 4.22 trang 58 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác ABC, biết M, N, P theo thứ tự là trung điểm cạnh BC, CA, AB.
Lời giải:
Cách 1:
Gọi A(xA; yA); B(xB; yB) và C(xC; yC) là tọa độ ba đỉnh của tam giác ABC.
Ta có:
+) M(4; 0) là trung điểm của BC nên
(1)
+) N(5; 2) là trung điểm của CA nên
(2)
+) P(2; 3) là trung điểm của AB nên
(3)
Thay (2) và (3) vào (1) ta được:
A(3; 5)
Khi đó B(1; 1)
C(7; –1)
Vậy A(3; 5), B(1; 1) và C(7; –1).
Cách 2:
Do M, N, P lần lượt là trung điểm của BC, CA, AB
Nên MN, NP, PM là các đường trung bình của tam giác ABC.
MN // AB, NP // BC, MP // AC.
+) Do MN // BM và NP // BM nên tứ giác MNPB là hình bình hành
Gọi B(xB; yB) và có M(4; 0), N(5; 2) và P(2, 3).
và
Khi đó Þ B(1; 1)
Tương tự ta cũng có A(3; 5) và C(7; –1).
Vậy A(3; 5), B(1; 1) và C(7; –1).
Bài 4.23 trang 58 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm A(2;–1), B(1; 4) và C(7; 0).
a) Tính độ dài các đoạn thẳng AB, BC và CA. Từ đó suy ra tam giác ABC là một tam giác vuông cân.
b) Tìm toạ độ của điểm D sao cho tứ giác ABDC là một hình vuông.
Lời giải:
a) Với A(2;–1), B(1; 4) và C(7; 0) ta có:
Do đó AB = CA
Nên tam giác ABC cân tại A (1)
Mặt khác:
Và
BC2 = AB2 + AC2
Theo định lí Pythagoras đảo thì tam giác ABC vuông tại A (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A với
b)
Vì ABC là tam giác vuông cân
Nên để ABDC là hình vuông thì tứ giác ABDC là hình bình hành
Gọi D(xD; yD) và có A(2;–1), B(1; 4), C(7; 0).
và
Do đó
D(6; 5).
Vậy tọa độ điểm D cần tìm là D(6; 5).
Bài 4.24 trang 58 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm M(–2; 1) và N(4; 5).
a) Tìm toạ độ của điểm P thuộc Ox sao cho PM = PN.
b) Tìm toạ độ của điểm Q sao cho
c) Tìm toạ độ của điểm R thoả mãn Từ đó suy ra P, Q, R thẳng hàng.
Lời giải:
a) Gọi P(a; 0) là điểm thuộc tia Ox.
Với M(–2; 1) và N(4; 5) ta có:
Do đó PM = PN
(–2 – a)2 + 12 = (4 – a)2 + 52
4 + 4a + a2 + 1 = 16 – 8a + a2 + 25
12a = 36
a = 3.
Vậy P(3; 0).
b) Giả sử điểm Q có tọa độ là Q(x; y).
Với M(–2; 1), N(4; 5) và P(3; 0) ta có:
Do đó
Q(0; 11).
Vậy Q(0; 11).
c) Giả sử R(x0; y0) là điểm cần tìm.
Với M(–2; 1) và N(4; 5) ta có:
Do đó
+) Ta xét ba điểm: P(3; 0), Q(0; 11) và
và
Có: nên hai vectơ và cùng phương
Do đó P, Q, R thẳng hàng
Vậy ba điểm P, Q, R thẳng hàng.
Giải SBT Toán 10 trang 59, 60 Tập 1
Bài 4.25 trang 59 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm M(–3; 2) và N(2; 7).
a) Tìm toạ độ của điểm P thuộc trục tung sao cho M, N, P thẳng hàng.
b) Tìm toạ độ của điểm Q đối xứng với N qua Oy.
c) Tìm toạ độ của điểm R đối xứng với M qua trục hoành.
Lời giải:
a) Giả sử P(0; yP) là điểm thuộc trục tung.
Với M(–3; 2) và N(2; 7) ta có:
và
Ba điểm M, N, P thẳng hàng
và cùng phương
(với yP ≠ 7)
3.(yP – 7) = –2.(yP – 2)
3.yP – 21 = –2yP + 4
3.yP + 2yP = 4 + 21
5.yP = 25
yP = 5 (thỏa mãn)
Vậy P(0; 5).
b)
Vì Q đối xứng với N(2; 7) qua Oy nên:
+ Hoành độ của điểm Q là số đối của hoành độ điểm N;
+ Tung độ của điểm Q bằng với tung độ của điểm N.
Do đó Q(–2; 7).
Vậy Q(–2; 7).
c)
Vì R đối xứng với M(–3; 2) qua trục hoành nên:
+ Hoành độ của điểm R bằng hoành độ điểm M;
+ Tung độ của điểm R bằng số đối của tung độ điểm M.
Do đó R(–3; –2).
Vậy R(–3; –2).
Bài 4.26 trang 60 SBT Toán 10 Tập 1:
Trong mặt phẳng toạ độ Oxy cho hai điểm C(1; 6) và D(11; 2).
a) Tìm toạ độ của điểm E thuộc trục tung sao cho vectơ có độ dài ngắn nhất.
b) Tìm toạ độ của điểm F thuộc trục hoành sao cho đạt giá trị nhỏ nhất.
c) Tìm tập hợp các điểm M sao cho
Lời giải:
a) Giả sử E(0; yE) là điểm thuộc trục tung.
Với C(1; 6) và D(11; 2) ta có:
và
Vì (8 – 2yE)2 ≥ 0 ∀ yE
Nên 122 + (8 – 2yE)2 ≥ 122 ∀ yE
Hay ∀ yE
∀ yE
Do đó độ dài của vectơ nhỏ nhất bằng 12
Dấu “=’ xảy ra 8 – 2yE = 0
yE = 4
Vậy với E(0; 4) thì vectơ có độ dài ngắn nhất.
b) Giả sử F(a; 0) thuộc trục hoành.
Với C(1; 6) và D(11; 2) ta có:
Vì (35 – 5a)2 ≥ 0 ∀a
Nên (35 – 5a)2 + 182 ≥ 182 ∀a
Hay ∀a
∀a
Do đó độ dài của vectơ nhỏ nhất bằng 18
Dấu “=’ xảy ra 35 – 5a = 0
a = 7
Vậy với F(7; 0) thì đạt giá trị nhỏ nhất.
c) Giả sử M(x ; y) là tọa độ điểm thỏa mãn
Với C(1; 6) và D(11; 2) ta có:
+)
Gọi I là trung điểm của CD, khi đó ta có:
• Tọa độ của I là: Þ I(6; 4).
•
Ta có
Do đó tập hợp điểm M là đường tròn tâm I(6; 4) và bán kính
Giải SBT Toán 10 trang 61, 62 Tập 1
Bài 4.27 trang 61 SBT Toán 10 Tập 1:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(1; 2), B(3; 4) và C(2; –1).
a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm của tam giác đó.
b) Tìm toạ độ tâm I của đường tròn ngoại tiếp và trực tâm H của tam giác ABC.
Lời giải:
a) Với ba điểm A(1; 2), B(3; 4) và C(2; –1) ta có:
+)
+)
Do nên hai vectơ và không cùng phương
Do đó ba điểm A, B, C không thẳng hàng nên tạo thành một tam giác.
Gọi G(x; y) là tọa độ trọng tâm của tam giác ABC
Vậy
b) * Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC.
Gọi I(a; b) là tọa độ tâm đường tròn ngoại tiếp tam giác ABC.
Khi đó IA = IB = IC.
Với ba điểm A(1; 2), B(3; 4) và C(2; –1) ta có:
Do đó IA = IB = IC IA2 = IB2 = IC2
(1 – a)2 + (2 – b)2 = (3 – a)2 + (4 – b)2 = (2 – a)2 + (–1 – b)2
* Tìm tọa độ trực tâm H của tam giác ABC.
Gọi H(x0; y0) là tọa độ trực tâm của tam giác ABC.
Vì H là trực tâm của tam giác ABC nên theo kết quả của Bài 4.15, phần a) trang 54 ta có (với M là trung điểm của BC).
Với A(1; 2), B(3; 4), C(2; –1) và ta có:
• Trung điểm M của BC có tọa độ là:
Ta có:
Vậy và
Bài 4.28 trang 62 SBT Toán 10 Tập 1:
Lời giải:
Chọn hệ trục tọa độ Oxy sao cho các đỉnh của hình hồ hình chữ nhật có các tọa độ là A(0; 0), B(200; 0), C(200; 180) và D(0; 180).
Gọi vị trí các cột điện được trồng là C1, C2, C3 và C4.
Vì vị trí cột điện thứ nhất C1 nằm trên bờ AB và cách A một khoảng 20 m nên trong hệ trục tọa độ đã chọn, điểm C1(20; 0).
Vị trí cột điện thứ tư nằm trên bờ CD và cách C một khoảng 30 m nên khoảng cách từ C4 đến D là 170 m. Khi đó trong hệ trục tọa độ đã chọn, điểm C4(170; 180).
Vì bốn cột điện được trồng liên tiếp nhau và cách đều trên một đường thẳng nên:
C1C2 = C2C3 = C3C4
C1C2 = C1C4 và C1C3 = C1C4.
và
Giả sử C2(a; b) và C3(x; y).
Với C1(20; 0), C4(170; 180) ta có:
Vậy khoảng cách từ cột điện thứ hai đến bờ AB là 60 m và đến bờ AD là 70 m.
Khoảng cách từ cột điện thứ ba đến bờ AB là 120 m và đến bờ AD là 120 m.
Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 8: Tổng và hiệu của hai vectơ
Bài 9: Tích của một vectơ với một số
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức