Sách bài tập Toán 10 Bài 26 (Kết nối tri thức): Biến cố và định nghĩa cổ điển của xác suất
Với giải sách bài tập Toán 10 Bài 26: Biến cố và định nghĩa cổ điển của xác suất sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 Bài 26.
Giải sách bài tập Toán lớp 10 Bài 26: Biến cố và định nghĩa cổ điển của xác suất - Kết nối tri thức
Giải SBT Toán 10 trang 63 Tập 2
Bài 9.1 trang 63 SBT Toán 10 Tập 2: Gieo một con xúc xắc liên tiếp hai lần.
Lời giải:
a)
Khi gieo con xúc xắc lần thứ nhất, ta sẽ nhận được số chấm a là số tự nhiên bất kì xuất hiện với 1 ≤ a ≤ 6.
Khi gieo con xúc xắc lần thứ hai, ta sẽ nhận được số chấm b là số tự nhiên bất kì xuất hiện với 1 ≤ b ≤ 6
Do đó, không gian mẫu là: Ω = {(a, b), 1 ≤ a, b ≤ 6} trong đó a, b tương ứng là số chấm xuất hiện ở lần gieo thứ nhất và thứ hai.
b)
Gọi A là biến cố: “Tổng số chấm xuất hiện lớn hơn hay bằng 8”. Ta có:
Khi a = 1 thì không tồn tại b với 1 ≤ b ≤ 6 thỏa mãn
Khi a = 2 thì b = 6
Khi a = 3 thì b = 5 hoặc b = 6
Khi a = 4 thì b = 4 hoặc b = 5 hoặc b = 6
Khi a = 5 thì b = 3 hoặc b = 4 hoặc b = 5 hoặc b = 6
Khi a = 6 thì b = 2 hoặc b = 3 hoặc b = 4 hoặc b = 5 hoặc b = 6
Do đó, A = {(2, 6); (3, 5); (3, 6); (4, 4); (4, 5); (4, 6); (5, 3); (5, 4); (5, 5); (5, 6); (6, 2); (6, 3); (6, 4); (6, 5); (6, 6)}.
= Ω\A = {(1, 1); (1, 2); (1, 3); (1, 4); (1, 5); (1, 6); (2, 1); (2, 2); (2, 3); (2, 4); (2, 5); (3, 1); (3, 2); (3, 3); (3, 4); (4, 1); (4, 2); (4, 3); (5, 1); (5, 2); (6, 1)}.
E: “Con xúc xắc xuất hiện mặt 6”;
F: “Rút được thẻ A hoặc con xúc xắc xuất hiện mặt 5”.
Các biến cố E, , F và là các tập con nào của không gian mẫu?
Lời giải:
a)
Khi gieo con xúc xắc 1 lần, ta sẽ nhận được số chấm a là số tự nhiên bất kì xuất hiện với 1 ≤ a ≤ 6.
Khi rút ngẫu nhiên một thẻ từ một hộp chứa 4 thẻ A, B, C, D ta sẽ nhận được 1 phần tử bất kì trong tập hợp {A; B; C; D}
Do đó, không gian mẫu là:
Ω = {(1, A); (1, B); (1, C); (1, D); (2, A); (2, B); (2, C); (2, D); (3, A); (3, B); (3, C); (3, D); (4, A); (4, B); (4, C); (4, D); (5, A); (5, B); (5, C); (5, D); (6, A); (6, B); (6, C); (6, D)}.
b)
Xét biến cố E: “Con xúc xắc xuất hiện mặt 6”. Ta có:
E = {(6, A); (6, B); (6, C); (6, D)}.
Xét biến cố = Ω\E = {(1, A); (1, B); (1, C); (1, D); (2, A); (2, B); (2, C); (2, D); (3, A); (3, B); (3, C); (3, D); (4, A); (4, B); (4, C); (4, D); (5, A); (5, B); (5, C); (5, D)}.
Xét biến cố F: “Rút được thẻ A hoặc con xúc xắc xuất hiện mặt 5”. Ta có:
Gọi biến cố F1: “Rút được thẻ A”. Ta có:
F1 = {(1, A); (2, A); (3, A); (4, A); (5, A); (6, A)}.
Gọi biến cố F2: “Con xúc xắc xuất hiện mặt 5”. Ta có:
F2 = {(5, A); (5, B); (5, C); (5, D)}
Do đó, ta có: F = F1 ∪ F2 = {(1, A); (2, A); (3, A); (4, A); (5, A); (6, A); (5, B); (5, C); (5, D)}.
Xét biến cố = Ω\F = {(1, B); (1, C); (1, D); (2, B); (2, C); (2, D); (3, B); (3, C); (3, D); (4, B); (4, C); (4, D); (6, B); (6, C); (6, D)}.
Rút ngẫu nhiên từ mỗi túi I và II một tấm thẻ.
A: “Hai số trên hai tấm thẻ bằng nhau”;
B: “Hai số trên hai tấm thẻ chênh nhau 2”;
C: “Hai số trên hai tấm thẻ chênh nhau lớn hơn hay bằng 2”.
Các biến cố là các tập con nào của không gian mẫu?
Lời giải:
a)
Rút ngẫu nhiên từ túi I một tấm thẻ ta nhận được tấm thẻ đánh số 1 hoặc 2 hoặc 3 hoặc 4.
Rút ngẫu nhiên từ túi II một tấm thẻ ta nhận được tấm thẻ đánh số 1 hoặc 2 hoặc 3 hoặc 4 hoặc 5.
Do đó, không gian mẫu là:
Ω = {(1, 1); (1, 2); (1, 3); (1, 4); (1, 5); (2, 1); (2, 2); (2, 3); (2, 4); (2, 5); (3, 1); (3, 2); (3, 3); (3, 4); (3, 5); (4, 1); (4, 2); (4, 3); (4, 4); (4, 5)}.
b)
Xét biến cố A: “Hai số trên hai tấm thẻ bằng nhau”, ta có:
A = {(1, 1); (2, 2); (3, 3); (4, 4)}.
Xét biến cố: = Ω\A = {(1, 2); (1, 3); (1, 4); (1, 5); (2, 1); (2, 3); (2, 4); (2, 5); (3, 1); (3, 2); (3, 4); (3, 5); (4, 1); (4, 2); (4, 3); (4, 5)}.
Xét biến cố B: “Hai số trên hai tấm thẻ chênh nhau 2”, để thỏa mãn B ta có:
Khi rút ra từ túi I tấm thẻ đánh số 1 thì túi II phải rút ra thẻ đánh số 3
Khi rút ra từ túi I tấm thẻ đánh số 2 thì túi II phải rút ra thẻ đánh số 4
Khi rút ra từ túi I tấm thẻ đánh số 3 thì túi II phải rút ra thẻ đánh số 5
Khi rút ra từ túi II tấm thẻ đánh số 1 thì túi I phải rút ra thẻ đánh số 3
Khi rút ra từ túi II tấm thẻ đánh số 2 thì túi I phải rút ra thẻ đánh số 4
Do đó, B = {(1, 3); (2, 4), (3, 5); (3, 1); (4, 2)}.
Xét biến cố: = Ω\B = {(1, 1); (1, 2); (1, 4); (1, 5); (2, 1); (2, 3); (2, 2); (2, 5); (3, 2); (3, 3); (3, 4); (4, 1); (4, 3); (4, 4); (4, 5)}.
Xét biến cố C: “Hai số trên hai tấm thẻ chênh nhau lớn hơn hay bằng 2”, có nghĩa là hiệu số trên 2 tấm thẻ là 2 hoặc 3 hoặc 4.
Do đó, C = {(1, 3); (1, 4); (1, 5); (2, 4); (2, 5); (3, 5); (3, 1); (4, 1); (4, 2)}.
Xét biến cố: = Ω\C = {(1, 1); (1, 2); (2, 1); (2, 3); (2, 2); (3, 2); (3, 3); (3, 4); (4, 3); (4, 4); (4, 5)}.
Lời giải:
Gieo một đồng xu 1 lần ta thu được kết quả bất kì thuộc tập hợp: {sấp; ngửa}.
Gieo một con xúc xắc 1 lần ta thu được kết quả bất kì thuộc tập hợp: {1; 2; 3; 4; 5; 6}.
Do đó, không gian mẫu là:
Ω = {(sấp, 1); (sấp, 2); (sấp, 3); (sấp, 4); (sấp, 5); (sấp, 6); (ngửa, 1); (ngửa, 2); (ngửa, 3); (ngửa, 4); (ngửa, 5); (ngửa, 6)}.
Số phần tử của Ω là: n(Ω) = 12.
Xét biến cố A: “Đồng xu xuất hiện mặt sấp hoặc con xúc xắc xuất hiện mặt 5 chấm”.
A1: “Đồng xu xuất hiện mặt sấp”. Ta có: A1 = {(sấp, 1); (sấp, 2); (sấp, 3); (sấp, 4); (sấp, 5); (sấp, 6)}.
A2: “Con xúc xắc xuất hiện mặt 5 chấm”. Ta có: A2 = {(sấp, 5); (ngửa, 5)}.
Do đó, ta có:
A = A1 ∪ A2 = {(ngửa, 5); (sấp, 1); (sấp, 2); (sấp, 3); (sấp, 4); (sấp, 5); (sấp, 6)}.
Số phần tử của A là: n(A) = 7.
Do đó, xác suất của biến cố A là: .
a) A: “Cả hai tấm thẻ đều mang số 5”.
b) B: “Tổng hai số trên hai tấm thẻ bằng 6”.
Lời giải:
Rút ngẫu nhiên từ hộp I một tấm thẻ ta nhận được tấm thẻ vàng đánh số a bất kì với 1 ≤ a ≤ 12, a ∈ ℕ.
Rút ngẫu nhiên từ hộp II một tấm thẻ ta nhận được tấm thẻ đỏ đánh số b bất kì với 1 ≤ b ≤ 6, b ∈ ℕ.
Do đó, không gian mẫu là:
Ω = {(a, b), 1 ≤ a ≤ 12, 1 ≤ b ≤ 6, a, b ∈ ℕ}.
Do đó theo quy tắc nhân, Ω có: 12 . 6 = 72 (phần tử) hay n(Ω) = 72.
a)
Xét biến cố A: “Cả hai tấm thẻ đều mang số 5”. Ta có:
Khi a = 5 thì b = 5
Do đó A = {(5, 5)}.
Số phần tử của A là: n(A) = 1 .
Xác suất của biến cố A là: .
b)
Xét biến cố B: “Tổng hai số trên hai tấm thẻ bằng 6”. Ta có:
Khi a = 1 thì b = 5
Khi a = 2 thì b = 4
Khi a = 3 thì b = 3
Khi a = 4 thì b = 2
Khi a = 5 thì b = 1
Khi a ≥ 6 thì không tồn tại b với 1 ≤ b ≤ 6 thỏa mãn
Do đó B = {(1, 5); (2, 4); (3, 3); (4, 2); (5, 1)}.
Số phần tử của B là: n(B) = 5.
Xác suất của biến cố B là: .
Lời giải:
Rút ngẫu nhiên từ hộp I một tấm thẻ ta nhận được tấm thẻ đánh số a bất kì với 1 ≤ a ≤ 5, a ∈ ℕ.
Rút ngẫu nhiên từ hộp II một tấm thẻ ta nhận được tấm thẻ đánh số b bất kì với 1 ≤ b ≤ 6, b ∈ ℕ.
Rút ngẫu nhiên từ hộp III một tấm thẻ ta nhận được tấm thẻ đánh số c bất kì với 1 ≤ c ≤ 7, c ∈ ℕ.
Khi đó, Ω = {(a, b, c), 1 ≤ a ≤ 5; 1 ≤ b ≤ 6; 1 ≤ c ≤ 7, a, b, c ∈ ℕ}.
Theo quy tắc nhân, ta có: n(Ω) = 5 . 6 . 7 = 210.
Gọi biến cố A: “Tổng ba số ghi trên ba tấm thẻ bằng 15”.
Ta có:
A = {(2, 6, 7); (3, 6, 6); (3, 5, 7); (4, 6, 5); (4, 5, 6); (4, 4, 7); (5, 3, 7); (5, 4, 6); (5, 5, 5); (5, 6, 4)}.
Suy ra, n(A) = 10.
Vậy xác suất của biến cố A là: P(A) = .
Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 24: Hoán vị, chỉnh vị và tổ hợp
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức