Hai túi I và II chứa các tấm thẻ được đánh số. Túi I: {1; 2; 3; 4}, túi II: {1; 2; 3; 4; 5}

Lời giải Bài 9.3 trang 63 SBT Toán 10 Tập 2 Toán 10 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 1,586 09/12/2022


Giải SBT Toán 10 Kết nối tri thức Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 9.3 trang 63 SBT Toán 10 Tập 2: Hai túi I và II chứa các tấm thẻ được đánh số. Túi I: {1; 2; 3; 4}, túi II: {1; 2; 3; 4; 5}.

Rút ngẫu nhiên từ mỗi túi I và II một tấm thẻ.

a) Mô tả không gian mẫu.

b) Xét các biến cố sau:

A: “Hai số trên hai tấm thẻ bằng nhau”;

B: “Hai số trên hai tấm thẻ chênh nhau 2”;

C: “Hai số trên hai tấm thẻ chênh nhau lớn hơn hay bằng 2”.

Các biến cố A, A¯, B, B¯, C, C¯ là các tập con nào của không gian mẫu?

Lời giải:

a)

Rút ngẫu nhiên từ túi I một tấm thẻ ta nhận được tấm thẻ đánh số 1 hoặc 2 hoặc 3 hoặc 4.

Rút ngẫu nhiên từ túi II một tấm thẻ ta nhận được tấm thẻ đánh số 1 hoặc 2 hoặc 3 hoặc 4 hoặc 5.

Do đó, không gian mẫu là:

Ω = {(1, 1); (1, 2); (1, 3); (1, 4); (1, 5); (2, 1); (2, 2); (2, 3); (2, 4); (2, 5); (3, 1); (3, 2); (3, 3); (3, 4); (3, 5); (4, 1); (4, 2); (4, 3); (4, 4); (4, 5)}.

b)

Xét biến cố A: “Hai số trên hai tấm thẻ bằng nhau”, ta có:

A = {(1, 1); (2, 2); (3, 3); (4, 4)}.

Xét biến cố: A¯  = Ω\A = {(1, 2); (1, 3); (1, 4); (1, 5); (2, 1); (2, 3); (2, 4); (2, 5); (3, 1); (3, 2); (3, 4); (3, 5); (4, 1); (4, 2); (4, 3); (4, 5)}.

Xét biến cố B: “Hai số trên hai tấm thẻ chênh nhau 2”, để thỏa mãn B ta có:

Khi rút ra từ túi I tấm thẻ đánh số 1 thì túi II phải rút ra thẻ đánh số 3

Khi rút ra từ túi I tấm thẻ đánh số 2 thì túi II phải rút ra thẻ đánh số 4

Khi rút ra từ túi I tấm thẻ đánh số 3 thì túi II phải rút ra thẻ đánh số 5

Khi rút ra từ túi II tấm thẻ đánh số 1 thì túi I phải rút ra thẻ đánh số 3

Khi rút ra từ túi II tấm thẻ đánh số 2 thì túi I phải rút ra thẻ đánh số 4

Do đó, B = {(1, 3); (2, 4), (3, 5); (3, 1); (4, 2)}.

Xét biến cố: B¯  = Ω\B = {(1, 1); (1, 2); (1, 4); (1, 5); (2, 1); (2, 3); (2, 2); (2, 5); (3, 2); (3, 3); (3, 4); (4, 1); (4, 3); (4, 4); (4, 5)}.

Xét biến cố C: “Hai số trên hai tấm thẻ chênh nhau lớn hơn hay bằng 2”, có nghĩa là hiệu số trên 2 tấm thẻ là 2 hoặc 3 hoặc 4.

Do đó, C = {(1, 3); (1, 4); (1, 5); (2, 4); (2, 5); (3, 5); (3, 1); (4, 1); (4, 2)}.

Xét biến cố: C¯  = Ω\C = {(1, 1); (1, 2); (2, 1); (2, 3); (2, 2); (3, 2); (3, 3); (3, 4); (4, 3); (4, 4); (4, 5)}.

Xem thêm các bài giải sách giáo khoa Toán 10 bộ sách Kết nối tri thức hay, chi tiết khác:

Bài 9.1 trang 63 SBT Toán 10 Tập 2: Gieo một con xúc xắc liên tiếp hai lần... 

Bài 9.2 trang 63 SBT Toán 10 Tập 2: Gieo một con xúc xắc đồng thời rút ngẫu nhiên một thẻ từ một hộp chứa 4 thẻ A, B, C, D... 

Bài 9.4 trang 63 SBT Toán 10 Tập 2: Gieo một đồng xu và một con xúc xắc đồng thời. Tính xác suất của biến cố A: “Đồng xu xuất hiện... 

Bài 9.5 trang 63 SBT Toán 10 Tập 2: Có hai hộp I và II. Hộp thứ nhất chứa 12 tấm thẻ vàng đánh số từ 1 đến 12. Hộp thứ hai chứa 6 tấm thẻ... 

Bài 9.6 trang 63 SBT Toán 10 Tập 2: Có ba chiếc hộp. Hộp thứ nhất chứa 5 tấm thẻ đánh số từ 1 đến 5. Hộp thứ hai chứa 6 tấm thẻ đánh số... 

1 1,586 09/12/2022


Xem thêm các chương trình khác: