Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
Với giải sách bài tập Toán 10 Bài 3: Bất phương trình bậc nhất hai ẩn sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 Bài 3.
Giải sách bài tập Toán lớp 10 Bài 3: Bất phương trình bậc nhất hai ẩn - Kết nối tri thức
Giải SBT Toán 10 trang 18 Tập 1
Bài 2.1 trang 18 SBT Toán 10 Tập 1: Cho bất phương trình bậc nhất hai ẩn -3x + y < 4.
a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.
Lời giải:
a) Biểu diễn miền nghiệm của bất phương trình -3x + y < 4 trên mặt phẳng tọa độ.
Bước 1. Vẽ đường thẳng d: -3x + y = 4 trên mặt phẳng tọa độ Oxy như sau:
• Xác định hai điểm thuộc đường thẳng d: -3x + y = 4.
Ta có bảng sau:
x |
0 |
1 |
y |
4 |
7 |
Do đó đồ thị của đường thẳng d: -3x + y = 4 đi qua các điểm có tọa độ (0; 4) và (1; 7).
• Xác định 2 điểm đó trên hệ trục tọa độ Oxy và kẻ đường thẳng đi qua 2 điểm đó, ta thu được đường thẳng d: -3x + y = 4.
Bước 2. Ta chọn O(0; 0) là điểm không thuộc đường thẳng d: -3x + y = 4 và thay vào biểu thức -3x + y, ta có -3 . 0 + 0 = 0 < 4.
Do đó miền nghiệm của bất phương trình -3x + y < 4 là nửa mặt phẳng bờ d chứa gốc tọa độ và bỏ đi đường thẳng d (miền không được gạch).
b) Khi đó miền nghiệm của bất phương trình -3x + y ≤ 4 là nửa mặt phẳng bờ d chứa gốc tọa độ (miền không được gạch).
Miền nghiệm của bất phương trình -3x + y ≥ 4 là nửa mặt phẳng bờ d không chứa gốc tọa độ (miền được gạch).
Bài 2.2 trang 18 SBT Toán 10 Tập 1: Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3.
Lời giải:
Ta có 2x + 3y + 3 ≤ 5x + 2y + 3
2x + 3y + 3 - 5x - 2y - 3 ≤ 0.
-3x + y ≤ 0.
Biểu diễn miền nghiệm của bất phương trình -3x + y ≤ 0 trên mặt phẳng tọa độ:
Bước 1. Vẽ đường thẳng d: -3x + y = 0 theo các bước sau:
• Xác định hai điểm thuộc đường thẳng d: -3x + y = 0.
x |
0 |
1 |
y |
0 |
3 |
Do đó đường thẳng d: -3x + y = 0 đi qua hai điểm có tọa độ (0; 0) và (1; 3).
• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: -3x + y = 0.
Bước 2. Ta chọn điểm (0; 1) là điểm không thuộc đường thẳng d: -3x + y = 0 và thay vào biểu thức -3x + y ta có -3 . 0 + 1 = 1 > 0.
Do đó miền nghiệm của bất phương trình -3x + y ≤ 0 là nửa mặt phẳng bờ d không chứa điểm (0; 1) (miền không được gạch).
Bài 2.3 trang 18 SBT Toán 10 Tập 1: Xác định một bất phương trình bậc nhất hai ẩn nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm (H.2.3).
Lời giải:
Ta thấy đường thẳng d đi qua hai điểm (0; -2) và (4; 0).
Gọi phương trình đường thẳng d: y = ax + b (a ≠ 0).
Thay x = 0; y = -2 vào đường thẳng d ta có:
-2 = a . 0 + b
b = -2.
Thay x = 4; y = 0 vào đường thẳng d ta có:
0 = 4 . a + (-2)
2 = 4 . a
a =
Do đó phương trình đường thẳng d: y = x - 2
2y = x - 4
x - 2y = 4.
Chọn điểm O(0; 0) là điểm không thuộc đường thẳng d và thay vào biểu thức x - 2y ta được: 0 - 2 . 0 = 0 < 4.
Do đó bất phương trình nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm là x - 2y ≤ 4.
Giải SBT Toán 10 trang 19 Tập 1
Bài 2.4 trang 19 SBT Toán 10 Tập 1: Cho bất phương trình x + 2y ≥ -4.
a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.
b) Miền nghiệm có chứa bao nhiêu điểm (x; y) với x, y là các số nguyên âm?
Lời giải:
a) Biểu diễn miền nghiệm của bất phương trình x + 2y ≥ -4 trên mặt phẳng tọa độ:
Bước 1. Ta vẽ đường thẳng d: x + 2y = -4 theo các bước sau:
• Xác định hai điểm thuộc đường thẳng d.
Ta có bảng sau:
x |
0 |
-4 |
y |
-2 |
0 |
Do đó đường thẳng d: x + 2y = -4 đi qua hai điểm (0; -2) và (-4; 0).
• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: x + 2y = -4.
Bước 2. Chọn điểm O(0; 0) không thuộc đường thẳng d và thay vào biểu thức x + 2y ta được 0 + 2 . 0 = 0 > -4.
Do đó miền nghiệm của bất phương trình x + 2y ≥ -4 là nửa mặt phẳng bờ d chứa gốc tọa độ (miền không được gạch).
b) Do x, y là các số nguyên âm và x + 2y ≥ -4 nên 0 > x > -4.
Với y ≤ -2 thì 2y ≤ -4, mà x là số nguyên âm nên x + 2y < -4 (loại).
Do đó 0 > y > -2 suy ra y = -1.
Ta có bảng sau:
x |
-1 |
-2 |
-3 |
y |
-1 |
-1 |
-1 |
x + 2y |
-3 > -4 (thỏa mãn) |
-4 = -4 (thỏa mãn) |
-5 < -4 (loại) |
Vậy miền nghiệm chứa hai điểm (x; y) {(-1; -1); (-2; -1)} với x, y là các số nguyên âm.
Bài 2.5 trang 19 SBT Toán 10 Tập 1: Một cửa hàng bán lẻ bán hai loại hạt cà phê. Loại thứ nhất giá 140 nghìn đồng/kg và loại thứ hai giá 180 nghìn đồng/kg. Cửa hàng trộn x kg loại thứ nhất và y kg loại thứ hai sao cho hạt cà phê đã trộn có giá không quá 170 nghìn đồng/kg.
a) Viết bất phương trình bậc nhất hai ẩn x, y thỏa mãn điều kiện đề bài.
b) Biểu diễn miền nghiệm của bất phương trình tìm được ở câu a trên mặt phẳng tọa độ.
Lời giải:
a) Giá tiền của x kg cà phê loại thứ nhất là 140x (nghìn đồng).
Giá tiền của y kg cà phê loại thứ hai là 180y (nghìn đồng).
Tổng số tiền khi trộn x kg loại thứ nhất và y kg loại thứ hai là: 140x + 180y (nghìn đồng).
Tổng số kg cà phê sau khi trộn x kg loại thứ nhất và y kg loại thứ hai là: x + y (kg).
Giá của cà phê sau khi trộn có giá cao nhất là 170 nghìn đồng/kg nên số tiền cao nhất thu được khi bán x + y kg cà phê là 170(x + y) (nghìn đồng).
Khi đó ta có bất phương trình 140x + 180y ≤ 170(x + y).
140x - 170x + 180y - 170y ≤ 0
-30x + 10y ≤ 0
-3x + y ≤ 0
Vậy bất phương trình bậc nhất hai ẩn x, y thỏa mãn điều kiện đề bài là -3x + y ≤ 0.
b) Biểu diễn miền nghiệm của bất phương trình -3x + y ≤ 0 trên mặt phẳng tọa độ:
Bước 1: Ta vẽ đường thẳng d: -3x + y = 0 như sau:
• Xác định hai điểm thuộc đường thẳng d: -3x + y = 0.
x |
0 |
1 |
y |
0 |
3 |
Do đó đường thẳng d: -3x + y = 0 đi qua hai điểm có tọa độ (0; 0) và (1; 3).
• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: -3x + y = 0.
Bước 2: Ta chọn điểm (0; 1) là điểm không thuộc đường thẳng d: -3x + y = 0 và thay vào biểu thức -3x + y ta có -3 . 0 + 1 = 1 > 0.
Do đó miền nghiệm của bất phương trình -3x + y ≤ 0 là nửa mặt phẳng bờ d không chứa điểm (0; 1) (miền không được gạch).
Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 2: Tập hợp và các phép toán trên tập hợp
Bài 4: Hệ bất phương trình bậc nhất hai ẩn
Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°
Xem thêm tài liệu Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức